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BACKGROUND: The lung allocation score prioritizes candidates for a lung transplant in the United

States. As the country adopts the continuous distribution framework for organ allocation, we must

reevaluate lung allocation score assumptions to maximize transplant benefit.

METHODS: We used Scientific Registry of Transplant Recipients data to study the impact of these changes: (1)

updating cohorts; (2) transitioning from 1- to 5-year posttransplant survival; (3) using time-varying effects for

non-proportional hazards; and (4) weighting waitlist and posttransplant area under the curve differently. Models

were compared using Spearman correlations andC-statistics. The thoracic simulation allocationmodel character-

ized transplant rates and proportions of recipient subgroups under the current and new systems.

RESULTS: Posttransplant areas under the curve models were estimated with recipients aged ≥12 from

January 1, 2014, to December 31, 2018. All models had similar C-statistics and Spearman correlations,

indicating similar predictive performance and posttransplant area under the curve rankings. Five-year

posttransplant area under the curve across age and diagnosis groups varied more than 1-year groups.

Using the thoracic simulation allocation model, 1- and 5-year posttransplant model under the curve

models showed similar transplant rates and recipient characteristics under the current system, but under

continuous distribution, 5-year posttransplant area under the curve resulted in increased transplant rates

with more recipients younger and in diagnosis groups B and C.

CONCLUSION: Incorporating equally weighted waitlist and posttransplant models using 5-year post-

transplant survival detected the largest variability in survival under the continuous distribution system,

which could improve long-term survival in the United States.
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The lung allocation score (LAS) prioritizes candidates

for a lung transplant in the United States based on the esti-

mated net survival benefit of a transplant. The LAS is

derived using two Cox proportional hazards (PH) models to
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calculate the waitlist area under the curve (WLAUC) and

posttransplant area under the curve (PTAUC) to represent

expected survival without and with transplant over the next

year, respectively.1 The WLAUC currently receives twice

the weight of the PTAUC, a structural element borne out of

the preference of the lung transplant community to give

risk of waitlist mortality greater relative weight in alloca-

tion priority after the LAS was first implemented in 2005.1

Implementation of the LAS resulted in broad changes to the
ransplantation. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.healun.2022.02.012&domain=pdf
mailto:valapom@ccf.org
https://doi.org/10.1016/j.healun.2022.02.012
http://www.jhltonline.org


Table 1 Descriptive Statistics for the Risk Factors Included
in the PTAUC Model

Variable Mean/N (SD/Percent)

Age 57 (14)
Creatinine 0.84 (0.31)
Cardiac Index 2.9 (0.8)

Missing 502 (4.5%)
Ventilation Status 859 (8%)
Diagnosis Group

A 2921 (26%)
B 434 (4%)
C 1245 (11%)
D 6610 (59%)

Diagnosis: Bronchiectasis (A) 2 (0%)
Diagnosis: Lymphangioleiomyoma-
tosis (A)

193 (1.7%)

Diagnosis: Sarcoidosis with PA < 30
mmHg (A)

167 (5.5%)

Diagnosis: Sarcoidosis with PA > 30
mmHg (D)

991 (8.8%)

Diagnosis: Pulmonary Fibrosis not
Idiopathic (D)

116 (1.0%)

Diagnosis: Obliterative Bronchiolitis
(D)

42 (0.4%)

Functional Status
No assistance 609 (5%)
Some assistance 9545 (85%)
Full assistance 1058 (9%)

6-minute walk distance (feet) 725 (448)

Group A, obstructive lung disease; Group B, pulmonary vascular dis-

ease; Group C, cystic fibrosis and immunodeficiency disorders; Group D,

restrictive lung disease; PTAUC, posttransplant area under the curve.

Mean and standard deviations summarized continuous variables,

and frequencies and percents summarized categorical variables. The

descriptive statistics for the continuous variables were calculated
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practice of lung transplant in the United States, including an

exponential increase in the listing and transplant of candi-

dates at high risk for waitlist mortality—a practice not fea-

sible in the preceding time-based allocation system.

Despite major shifts in practice and characteristics of

transplant candidates and recipients over the past 16 years,

the LAS system has undergone few structural changes.2 At

the same time, long-term survival for lung transplant recipi-

ents has plateaued at approximately 60% at 5 years.2 This

trend has been partially attributed to the structure of the

LAS, which includes 2:1 weighting of WLAUC to PTAUC

in its calculation of transplant benefit and exclusion of

long-term survival in modeling, elements that may perpetu-

ate transplant without long-term survival benefit.2-5

The US lung allocation system is poised to undergo major

changes, moving from the LAS to the continuous distribution

(CD) system. CD makes explicit how equity is balanced with

utility by providing relative value to all considerations in organ

allocation, including: waitlist urgency, posttransplant survival,

candidate biology, pediatric status, and placement efficiency.6-8

A major goal of CD is to reduce consideration of proximity of

the donor to the candidate in organ allocation, allowing the

sickest candidates wider geographic access to donors. This, in

effect, would expand the geographic reach of the LAS survival

models, potentially amplifying the access and survival trends

brought about by the LAS.3

We hypothesized that alterations in LAS modeling struc-

ture, follow-up time, and weighting would have a greater

impact on transplant trends in a CD allocation system than

under the current allocation system. We examined the pop-

ulation effects of specific survival models for waitlists and

posttransplant in the CD system recently approved by the

Organ Procurement and Transplantation Network (OPTN)

Lung Transplantation Committee.

before trimming outlier values to the 1st and 99th percentiles.
Methods

The Scientific Registry of Transplant Recipients (SRTR) database,

which includes data on all US donors, transplant candidates, and

recipients, was used for this analysis. Oversight of the acquisition

of this data is provided by the Health Resources and Services

Administration, US Department of Health and Human Services.9

This work follows the International Society for Heart and Lung

Transplantation ethics statement.
Population

The cohort for the PTAUC analyses included lung transplant

recipients from January 1, 2014, to December 31, 2018. Recipient

follow-up was administratively censored at the earliest of 1 or

5 years or July 31, 2020. The cohort for the thoracic simulation

allocation model (TSAM) included the most updated candidate

and recipient cohort from January 1, 2018, to December 31, 2019.
Modeling framework

The LAS measures expected survival through two components:

WLAUC over 1 year and PTAUC over 1 year. To compare effects

of model covariates on 1- and 5-year posttransplant outcomes, the
same cohort was used to build all models, which included all covari-

ates in the updated LAS posttransplant model, including age, serum

creatinine, cardiac index, ventilation status, diagnosis group, func-

tional status, and 6-minute walk distance (Table 1).10 Continuous

variables were trimmed to the first and 99th percentiles to reduce

the influence of outliers. Ten iterations of multiple imputations

handled missing data, and Rubin’s rules combined estimates

across multiple imputations iterations.11

Multiple models were fit to the data to understand the impact of

model structure on lung transplant candidates. First, traditional

Cox proportional hazard models with updated LAS parameteriza-

tions (changes to parameters and coefficients recently approved by

the OPTN board) for continuous risk factors (e.g., reconsidering

the relationship of candidate age with posttransplant outcomes)

were fit to both 1- and 5-year posttransplant follow-up data. Next,

piecewise exponential models (PEMs) with and without time-

varying effects, which relax the proportional hazards assumption

of the Cox proportional hazards model,12 were fit to both 1- and 5-

year posttransplant follow-up data. The least absolute shrinkage

and selection operator (LASSO) was used to select predictive

covariates and estimate effects for the PEMs and Cox proportional

hazards models with updated LAS parameterizations. The tuning

parameter which minimized the deviance, as estimated through

10-fold cross-validation, was chosen. The LASSO also selected



868 The Journal of Heart and Lung Transplantation, Vol 41, No 7, July 2022
intervals with important time-varying effects in the PEM with

time-varying effects. Time-dependent C-statistics compared the

predictive performance across models 1 and 5 years after trans-

plant.13 The C-statistics used 10-fold cross-validation to minimize

the risk of overly optimistic estimates.

A series of 6 models were estimated to understand the effect of

the different modeling decisions: (1) a new parameterization for

the posttransplant LAS model; (2) using PEMs instead of Cox pro-

portional hazards models; and (3) the integration of time-varying

effects. The specific models were:

1. A Cox proportional hazards model for 1-year survival

with the current LAS parameterization

2. A Cox proportional hazards model for 1-year survival

with an updated LAS parameterization

3. A PEM for 1-year survival without time-varying effects

4. A Cox proportional hazards model for 5-year survival

with an updated LAS parameterization

5. A PEM for 5-year survival without time-varying effects

6. A PEM for 5-year survival with time-varying effects
Transplant priority

PTAUC was calculated, and Spearman correlations compared the

similarity in recipient PTAUC rankings resulting from each of the

6 models. A Spearman correlation of 1 indicated identical ranks,

and 0 indicated unrelated ranks, between the normalized values of

PTAUC. PTAUC values, which are generally interpreted as the

number of expected days of survival after transplant over 1 or

5 years, were normalized on a scale from 0 to 1 as used in the CD

system. This allows for a direct comparison of PTAUC over dif-

ferent time scales. Means and standard deviations of the PTAUC

were examined by recipient age subgroups (12-<18, 18-<35, 35-
<50, 50-<65, and ≥65) and diagnosis group (group A−obstructive
lung disease, group B−pulmonary vascular disease, group C−cys-
tic fibrosis and immunodeficiency disorders, and group D−restric-
tive lung disease). These prespecified subgroups were chosen for

illustrative purposes, and the full list of variables adjusted for in

the PTAUC is included in Table 1.
Simulation

We used the SRTR TSAM, a validated Monte Carlo simula-

tion, to simulate impact of each of the 6 models.14,15 A

TSAM two-factor factorial study was performed to determine

the effect of transitioning from a 1- to a 5-year PTAUC

model. The first factor was the PTAUC model (1- or 5-year),

and the second was the base allocation system (current alloca-

tion system), 1:1 WLAUC:PTAUC CD system, and 2:1

WLAUC:PTAUC CD system. The TSAM lung offer accep-

tance models are described in the Appendix. Simulations were

run 10 times, the standard number of TSAM software runs.

Results

The cohort for estimating PTAUC consisted of 11,212 lung

transplant recipients with a mean age of 57 years; 59% of

recipients were in diagnosis group D. Most variables did

not have missing data, although 4.5% of recipients had

missing values for cardiac index (Table 1).
Time-varying effects

The continuous risk factors did not have dramatic time-

varying effects on survival. The relationship between sur-

vival and age was a U-shaped curve, with the youngest

and oldest recipients experiencing worse relative survival

(Supplemental Figure 1). The pattern was similar over time,

although the slope increased for older recipients as time

from transplant increased. The cardiac index had a rela-

tively weak association with posttransplant survival, and

the effect had relatively small differences over time. Creati-

nine had a moderate association, although the effects were

notably stronger for a recipient follow-up period of 0 to

90 days after transplant. Lastly, 6-minute walk distance

also had a notable and mostly linear relationship, although

recipients with longer 6-minute walk distances had notably

better relative survival rates between 3 and 5 years after

transplant than before 3 years. Thus, the time-varying

effects had some differences over the period of follow-up,

although the differences were relatively small.
Model discrimination

Performance was comparable among the 6 models, as evi-

denced by similar C-statistics in the 1-year (60.2%, 60.6%,

and 60.5%) and 5-year models (58.9%, 58.9%, and 59.2%).

The PEM with time-varying effects had only marginally

better C-statistics than the Cox proportional hazards model

at 1 and 5 years and the PEM without time-varying effects.

The inclusion of flexible time-varying effects did not mean-

ingfully improve the predictive performance of the post-

transplant component of the LAS (Supplemental Table 1).
Transplant priority

Spearman correlations were used to compare recipient rank-

ings between models. The Cox proportional hazards models

with updated LAS parameterizations and the PEMs without

time-varying effects had nearly perfect correlations for

the 1- and 5-year models (0.96 and 0.97, respectively),

suggesting that the transition from a Cox proportional

hazards model to a PEM without time-varying effects did

not meaningfully change the ranking of recipients

(Supplemental Table 2). The Spearman correlation between

the 5-year PEMs with and without time-varying effects was

0.96, suggesting that the integration of time-varying effects

did not meaningfully alter recipient rankings. The transition

from a 1- to a 5-year model for a Cox proportional hazards

model or a PEM without time-varying effects had a Spear-

man correlation of 0.90 and 0.89, respectively. Thus, the

transition from a 1- to 5-year outcome changed rankings

more than the other modeling decisions.
PTAUC and WLAUC across candidate subgroups

The updated Cox proportional hazards models were

selected over alternative PEMs because the C-statistics

were not meaningfully different and moving to PEMs led to



Table 3 The 10th, 30th, 50th, 70th, and 90th Quantiles for
the WLAUC and PTAUC

Quantile

Model Component 10th 30th 50th 70th 90th

WLAUC 0.29 0.74 0.85 0.92 0.98
1-year PTAUC: Cox
PH (updated)

0.89 0.92 0.93 0.94 0.95

5-year PTAUC: Cox
PH (updated)

0.70 0.75 0.78 0.80 0.83

PH, proportional hazards; PTAUC, posttransplant area under the

curve; WLAUC, waiting list area under the curve.

The PTAUC was reported for the 1-year Cox model with a new param-

eterization [1-year: Cox proportional hazards (new)] and the 5-year

Cox model with an updated parameterization [5-year: Cox proportional

hazards (updated)]. The smaller differences between higher quantiles

of WLAUC indicate that changes in the relative differences across

PTAUC affect candidates with relatively low risk of waitlist mortality

than high risk.
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a large increase in model complexity without significant

improvements in discrimination (Supplemental Table 2).

Transitioning from a 1- to a 5-year model magnified differ-

ences in the PTAUC for some recipient subgroups. When

comparing the updated Cox proportional hazards models,

the average difference between recipients 35 to 50 years

and those 65 and older was 0.02 for the updated 1-year

model and increased to 0.08 for the updated 5-year model,

a 4-fold difference. The differences across disease groups

were less pronounced. The larger differences in the 5-year

PTAUC across age groups may alter the relative ranking of

candidates under the CD system because older candidates

would then require correspondingly larger differences in

the WLAUC to achieve the same relative ranking (Table 2).

Updating LAS parameterizations did not meaningfully

affect PTAUC, except for recipients 12 to 17 years. Their

PTAUC declined from 0.96 to 0.89, on average, due to the

U-shaped relationship between recipient age and posttrans-

plant survival, a relationship not seen in the current LAS

model, in which age had a linear effect only for recipients

45 years and older (Supplemental Figure 1).

The difference in 5-year PTAUC between recipients aged

35 to 50 and 65 and older was similar in magnitude to an

expected difference between occupying the 50th (higher ill-

ness severity) and 70th (lower illness severity) quantiles of

the WLAUC (Table 3). For example, an average individual

aged 35 to 50 in the 70th WLAUC quantile would have a

1:1 normalized LAS value of 1.02 with the 1-year PTAUC

and 0.90 with the 5-year PTAUC. In contrast, an average

individual aged 65 or older in the 50th quantile of WLAUC

would have a 1:1 LAS value of 1.07 with the 1-year PTAUC

and 0.89 with the 5-year PTAUC (Table 4). In a 1-year

PTAUC model, the older candidate with higher illness sever-

ity would receive priority for transplant. In a 5-year PTAUC

model, the same older candidate with higher illness severity

would receive similar priority as the younger candidate with

lower illness severity due to the impact of PTAUC. Greater

variability in the 5-year PTAUC model leads to larger

changes in the PTAUC’s contribution to the LAS.
Table 2 The Mean and Standard Deviation for the PTAUC Across Recip

Variable 1-year Cox PH (current) 1

Overall 0.93 (0.03)
Recipient Age
12-<18 0.96 (0.01)
18-<35 0.94 (0.03)
35-<50 0.94 (0.03)
50-<65 0.93 (0.02)
65+ 0.92 (0.02)

Diagnosis Group
A 0.94 (0.02)
B 0.89 (0.03)
C 0.94 (0.02)
D 0.92 (0.02)

PH, proportional hazards; PTAUC, posttransplant area under the curve.

The PTAUC was reported for the 1-year Cox model with the current parameteri

with a new parameterization [1-year: Cox proportional hazards (new)], and the

tional hazards (updated)]. Each area under the curve is reported as a standardize
Simulation results

Transplant rates and recipient characteristics were simi-

lar in the current allocation system when moving from a

1- to a 5-year PTAUC model (Figure 1, Supplemental

Table 3). Both CD allocation systems (1:1 WLAUC:

PTAUC and 2:1 WLAUC:PTAUC) had major differen-

ces in transplant rates and recipient characteristics when

moving from a 1- to a 5-year PTAUC model. Candi-

dates aged 18 to 65 experienced higher transplant rates

and encompassed a greater proportion of transplant

recipients, while candidates 65 and older experienced

lower transplant rates and comprised a lower proportion

of transplant recipients in the 5-year PTAUC model.

This correlated with higher transplant rates in Groups B

and C and lower transplant rates in Group D. Posttrans-

plant survival was similar in simulations using 1-year

and 5-year PTAUC models.
ient Age and Diagnosis Subgroups

-year Cox PH (updated) 5-year Cox PH (updated)

0.93 (0.03) 0.77 (0.06)

0.89 (0.02) 0.67 (0.07)
0.93 (0.03) 0.78 (0.07)
0.94 (0.03) 0.82 (0.05)
0.93 (0.03) 0.78 (0.04)
0.92 (0.03) 0.74 (0.05)

0.94 (0.02) 0.79 (0.05)
0.89 (0.04) 0.75 (0.06)
0.94 (0.03) 0.81 (0.06)
0.92 (0.03) 0.76 (0.05)

zation [1-year: Cox proportional hazards (current)], the 1-year Cox model

5-year Cox model with an updated parameterization [5-year: Cox propor-

d value of 0 to 1, regardless of the original length of follow-up.



Table 4 PTAUC Comparison by Age and WLAUC Quantile

Candidate age WLAUC quantile WLAUC PTAUC 1:1 LAS (normalized)a

1-year PTAUC
35-<50 70th 0.92 0.94 1.02
65+ 50th 0.85 0.92 1.07

5-year PTAUC
35-<50 70th 0.92 0.82 0.90
65+ 50th 0.85 0.74 0.89

PTAUC, posttransplant area under the curve; WLAUC, waiting list area under the curve.

Demonstration of the change in WLAUC and PTAUC by candidate aged 35-<50 and 65+ and moving from the 70th WLAUC quantile (lower illness sever-

ity) to the 50th WLAUC quantile (higher illness severity).
a1:1 LAS (normalized) = (1 - WLAUC) + PTAUC.
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Discussion

Principal findings

Five-year posttransplant survival models can achieve

equally precise survival estimates as 1-year models in the

newly proposed CD lung allocation system in the United

States. Simulations predict that incorporating long-term

survival models in the CD allocation system will result in

candidates younger than 65 years experiencing relatively

greater access to lung transplants than older candidates.
Rationale for reconsidering long-term survival in
lung allocation

The primary purpose of this analysis was to evaluate the

impact of alternative modeling strategies for the posttrans-

plant component of the current LAS risk calculation. The

implementation of the LAS system in 2005 led to signifi-

cant improvements in the US lung transplant system, allow-

ing access to transplant for those most in need, and likely

drove many of the recent innovations for the management

of critically ill transplant candidates; however, like most

policies, it led to some unintended consequences, namely

its impact on long-term survival. The LAS calculation

assigns waitlist urgency (WLAUC) twice the value of post-

transplant survival (PTAUC), perpetuating a trend of pro-

viding transplants to older and sicker candidates at the

highest risk for death without transplant but who may not

achieve substantial gains in posttransplant survival. In con-

sort with this effect on survival has come an exponential

rise in transplant-related costs and accrual of significant

posttransplant morbidity.16,17

The US lung allocation is poised to adopt the CD system,

in which the distribution of organs will be less bound by

strict geographic constraints and more driven by estimates

of waitlist and posttransplant survival. The potential conse-

quences of the LAS were somewhat curbed in a system in

which geographic proximity played a large role in organ

allocation, allowing lower-urgency candidates who were

also more likely to experience longer posttransplant sur-

vival to access transplant. The diminishing importance of

geographic proximity in the CD system could make the

effects of survival models more far-reaching, potentially
exacerbating poor posttransplant survival trends and unreal-

ized life-years gained from lung transplants.
Analytic approach to evaluating long-term survival
in lung allocation

Before and soon after the implementation of the LAS,

efforts to identify long-term survival models that could reli-

ably predict survival were believed to have diminishing

accuracy as time from transplant increased.1 Posttransplant

models were found to have poor predictive performance,

and efforts to model longer-term survival were subse-

quently abandoned.5 We explored modeling strategies that

could impact waitlist and posttransplant survival estimates

and tested them using validated simulation programs14 to

predict how these changes would impact allocation of donor

organs among US lung transplant candidates. Specifically,

we focused on 4 key strategies: (1) using short-term (1-

year) compared to long-term (5-year) posttransplant mod-

els; (2) comparison of the current LAS allocation frame-

work and CD with altered weights of the waitlist and

posttransplant models; (3) updating model cohorts to reflect

the current transplant population; and (4) assessing assump-

tions intrinsic to currently used Cox models, including the

proportional hazard assumption and consideration of time-

varying effects.

We built 1- and 5-year posttransplant models and studied

changes in the current population accessing transplants.

One criticism of the current LAS-based lung allocation sys-

tem is that the LAS considers only 1-year posttransplant

survival, which may not maximize the utility of trans-

planted organs.5 Predicting longer-term survival based on

candidate factors known at the time of transplant has proven

difficult because contributions from donor characteristics,

intraoperative and perioperative factors and postoperative

complications may have a differential impact on long-term

survival.5 Measures of model discrimination—the ability of

the LAS model to reliably discriminate between candidates

who are likely to survive versus not—is often measured

with the C-statistic and has led to conclusions that post-

transplant models perform poorly compared with the wait-

list models. However, C-statistics for WLAUC are

expected to be higher than for PTAUC because there is

greater variability in risk of death for candidates while on



Figure 1 Deceased donor transplant rates by A) candidate age and B) diagnosis groups across different allocation systems (current allo-

cation system, with and without a 5-year PTAUC [5-year Cox proportional hazards (new)]. The different allocation systems were (1) the

current allocation system, (2) the 1:1 WLAUC:PTAUC weighting, and (3) the 2:1 WLAUC:PTUAC weighting. Data presented in a tabular

format in Supplemental Table 3.

PTAUC, posttransplant area under the curve; WLAUC, waiting list area under the curve.
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the waiting list compared with posttransplant (e.g., trans-

plants likely to achieve very low survival are not per-

formed), which led us to explore the differences between

posttransplant models.

Next, the OPTN adopted the CD framework to comply

with the Final Rule requirement to minimize the role of

geography to the extent possible in candidates’ ability to

access transplant.18-20 The CD framework of organ alloca-

tion avoids strict geographic cut-points, which can seem

arbitrary; rather, it allows a continuum of geographic dis-

tance (or placement efficiency), which can expand or
contract in relation to other key allocation considerations,

including candidate biology, pediatric status, history of

living donation, WLAUC, and PTAUC.6,21 Models were

compared between the current LAS system (2:1 WLAUC:

PTAUC and 250 nautical miles as the first unit of alloca-

tion) and the proposed CD system (2:1 WLAUC:PTAUC,

1:1 WLAUC:PTAUC and a 10% placement efficiency met-

ric in which geographic proximity accounts for 10% of the

final allocation decision). The impact of changing the

weights of the WLAUC and PTAUC models was explored

to address concerns that the current weighting of the waitlist
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and posttransplant survival priorities would exacerbate the

unrealized potential life-years gained from transplants if it

were to carry forward into the CD system.

The importance of cohort selection for model parameter-

ization cannot be overstated, as the use of outdated models

can lead to poor performance in out-of-sample populations.

This has significant consequences in lung transplant alloca-

tion because the LAS has selected an increasingly older

waitlist candidate population, with more candidates with

idiopathic pulmonary fibrosis and on mechanical support.2,3

From inception, the LAS relied on outdated models due to

the time and analysis required for large-scale policy deci-

sions and institutional oversight, and its cohort has been

updated only minimally, with even fewer updates to the

structure of the underlying models. We have shown the

impact of updating cohorts in prior analyses, including

changing beta values and goodness-of-fit measures, which

can lead to changes in how candidates are prioritized for

transplant.2,14 We used updated LAS and TSAM cohorts in

this work to overcome this barrier.

Finally, the current waitlist and posttransplant models

are Cox proportional hazards models, which require

compliance with the proportional hazards assumption,

in which each covariate has a constant multiplicative

effect on a common hazard function for the entirety of

posttransplant follow-up. However, hazard ratios are

unlikely to remain constant because some risk factors

may lead to worse short-term outcomes but better long-

term outcomes (e.g., bilateral vs single lung trans-

plant).2,22-24 For this reason, we built PEMs to deter-

mine if consideration of time-varying effects improved

model performance, but these complex PEMs had C-sta-

tistics that were similar or very marginally better than

the simpler traditional Cox proportional hazards models.

The key finding of this work was that moving from a 1-

to a 5-year posttransplant model did not affect the current

LAS allocation system but led to meaningful changes in the

predicted patient population undergoing transplants in the

CD system. Consideration of long-term survival allowed

increased variability in the PTAUC, magnifying differences

among transplant recipients over time. This effect and the

relative increase in the importance of PTAUC in the CD

model resulted in a notable impact on transplant priority

when long-term survival was considered. While candidates

aged 65 and older and those in diagnosis group D had lower

transplant rates, this resulted in only a slightly lower pro-

portion of simulated transplants when a 5-year posttrans-

plant model was used. This effect was more pronounced

when using models with 1:1 WLAUC:PTAUC as opposed

to models in which waitlist priority is prioritized (e.g., 2:1

WLAUC:PTAUC).
Ethical considerations in using long-term survival
in allocation

The scarcity of donor organs worldwide, including in the

United States, has required the establishment of systems of

rationing that rely on ethical principles that protect patients’
interest while acknowledging that utility must be consid-

ered in the allocation of severely limited life-saving resour-

ces. The core ethical principles that guide the US organ

allocation systems first drafted in 1992 and reaffirmed

repeatedly in the last two decades define the core ethical

principles of organ allocation as “justice,” “respect for per-

sons,” and “utility.”8 These principles were also upheld by

the recently published International Society for Heart and

Lung Transplantation guidelines on the selection of lung

transplant candidates and the systems that allocate donor

lungs.25 This statement considered the principle of utility

on the societal level and made recommendations explicitly

to maximize net survival for society in aggregate, arguing

that “unsuccessful lung transplant affects not only the indi-

vidual who was transplanted but also a potential alternative

recipient who did not have the opportunity to be trans-

planted due to the prevailing organ shortage.”25 The US

LAS system has considered utility more narrowly at the

individual patient level, primarily due to the inability to

reliably estimate long-term survival. The analysis presented

here provides a framework for estimating survival up to

5 years after transplant that may provide a policy path

towards considering a system of allocation that gives more

serious consideration to aggregate survival while remaining

steadfast in the equally important principles that protect

patients’ autonomy and individual value in society.

Limitations

The TSAM is limited by use of retrospective populations,

although the cohort used candidates, offers, recipients, and

donors from January 1, 2018, to December 31, 2019. This

analysis was limited by variables used in the current alloca-

tion survival models and did not include new variables that

may improve prediction or discrimination. This was done

because incorporating new variables into the system

requires policy initiatives that have not yet been imple-

mented. The CD allocation system is not yet implemented

into policy and may undergo changes as a result of the pub-

lic comment cycle; however, the overall theoretical frame-

work is anticipated to remain the same. Posttransplant

survival models used for risk stratification and prioritization

for transplant are inherently limited to only factors known

before transplant and cannot account for surgical events

associated with short- and long-term survival. However, we

have shown a nearly identical C-statistic for 1- and 5-year

models in a large cohort highlighting the stability of the

relationship of candidate characteristics with survival—be

it short- or long-term. Not all recipients reached the full fol-

low-up time, which was the result of an analytic decision

made to ensure the most up-to-date cohort was used due to

changing cohort effects seen in lung allocation.

Conclusion

Incorporating long-term posttransplant survival into the CD

lung allocation system could curtail an unintended and far-

reaching consequence of the LAS-based system of limiting

long-term survival. This strategy may lead to future gains
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in posttransplant survival, especially in conjunction with

the implementation of the CD allocation system.
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