Clinical and Economic Benefit of CMV Matching in Kidney Transplant: A Decision Analysis

University of Iowa, Saint Louis University, Washington University, Oregon Health Sciences University, Portland Veterans Administration Hospital
Disclosures

David Axelrod, MD, MBA
Professor of Surgery
University of Iowa Hospitals and Clinics, Iowa City, IA

I have financial relationship(s) within the last 12 months relevant to my presentation with:
CareDx - Consultant
Talaris - Consultant
Scientific Direct - Advisor

AND
My presentation does not include discussion of off-label or investigational use.
I do not intend to reference unlabeled/unapproved uses of drugs or products in my presentation.

This work was supported wholly or in part by HRSA contract 75R60220C00011. The content is the responsibility of the authors alone and does not necessarily reflect the views or policies of the Department of HHS, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.
Cytomegalovirus In Kidney Transplant

Cytomegalovirus (CMV) is a major cause of morbidity and mortality after solid organ transplant

- Despite prophylaxis with valganciclovir, CMV infection increases the risk of death and graft loss
- Highest risk is in CMV-negative recipients (CMV R-) who receive CMV donor + (CMV D+) kidneys
 - Increased graft failure (D+/R- vs. D-/R-: hazard ratio [HR] = 1.17, \(P = .01 \))
 - All-cause mortality (HR = 1.18, \(P < .001 \))
 - Infection-related mortality (HR = 1.38, \(P = .03 \))

Leaphorn et al. AJT. 2019. 2:573-584
Benefits of CMV Donor and Recipient Matching

Preferentially transplanting CMV D- organs into CMV R- recipients reduces the risk of posttransplant CMV infection and associated graft loss

- The number of CMV D- exceeds CMV R- recipients nationally
- Selective allocation reduces CMV D+/R- transplant
- Preferential allocation of CMV D- donors did not negatively impact transplant rates in a pilot study

Lockridge et al. AJT. 2020:20:3502-3508

A: US vs. OPO Deceased Donor CMV Serology Pre-Pilot
B: OPO Pre vs. Post Pilot Deceased Donor CMV Serology
C: US vs. OPO Deceased Donor CMV Serology Post-Pilot
Purpose/Design of study

Purpose:
Assess the potential clinical and economic implications of a national allocation policy to preferentially allocate CMV D- kidneys to CMV R- candidates

Design:
• Markov decision analytic model
• Survival input: Leaphorn et al. *A/T* 2019, based on UNOS analysis
• Economic inputs: Linked Medicare-SRTR data to determine differential cost of D+/R- vs. D-/R- transplant
• Additional input: Pharmaceutical costs, utilities (dialysis, transplant), discount rate (3%)
Model Overview

- **Accept CMV+ organ**
 - **Wait for D-R-**
 - **Alive with graft function**
 - **CMV D- to R- transplant**
 - **Survive**
 - **Alive with graft function**
 - **Post-CF dialysis**
 - **Die at Tx**
 - **Post-CF dialysis**
 - **Dead**
 - **Post-CF dialysis**
 - **Alive on dialysis**
 - **Death**
 - **Dead**
- **CMV R+ to D- transplant**
 - **Alive with graft function**
 - **Survive**
 - **Graft fails**
 - **Die with function**
 - **Dead**
 - **Dialysis**
 - **Alive on dialysis**
 - **Death**
 - **Dead**
Results

• Expected survival increased with D-/R-transplants: **14.3 years vs 12.6 years**
• CMV D-/R- transplant increased quality of life-adjusted survival: **11.3 QALYs vs 9.8 QALYs**
• CMV D-/R- transplant less expensive than D+R-procedures: **$529,512 vs $542,963**

Thus, D-R- transplant is a dominant strategy: less expensive and more effective
How long can you wait for CMV- Donor?
Limitations

Markov model based on general survival data

- There may be differences in quality of the organ for CMV D- vs. D+
- Did not specifically model differences by race/ethnicity
- Sensitive to assumptions about the cost of prophylaxis and differential rates of posttransplant survival
Conclusions

- Prospective matching for CMV status results in *cost savings* and *longer posttransplant survival*
 - Waiting up to 30 months for a CMV D- organ was associated with equivalent long-term survival
- In 2018, 2699 D+/R- and 3890 D-/R+ deceased donor kidney transplants were performed
 - Reallocating CMV D- donors to CMV R- patients would save $36,304,249 in expenditures and increase survival by 4,048 QALYs
 - Would not impact access for CMV R+ patients, as D+ organs would be reallocated to them
CDRG

Transplantation

Director Jon Snyder, PhD, MS

Investigators Bertram Kasiske, MD FACP
 Ajay Israni, MD, MS
 Allyson Hart, MD, MS

Program Manager Caitlyn Nystedt, MPH, PMP

Sr. Administrative Assistant Pamela Giles

Medical Editor Mary Van Beusekom, MS, ELS

Marketing & Comms. Mona Shater, MA
 Amy Ketterer
 Tonya Eberhart

Project Managers Katherine Audette, MS
 Michael Conboy,
 Bryn Thompson, MPH

Project Coordinator Chris Folken

Sr. Manager, Biostatistics David Zaun, MS

Manager, Biostatistics Melissa Skeans, MS

Principal Biostatisticians Nicholas Salkowski, PhD
 Andrew Wey, PhD

Sr. Biostatistician Donnie Musgrove, PhD

Biostatisticians David Schladt, MS
 Tim Weaver, MS
 Yoon Son Ahn, MS
 Jon Miller, PhD, MPH

IT, Web, Database, Simulation Ryan Follmer
 Carl Fils-Aime
 Mark Fredrickson
 Patrick Johnson
 Joshua Pyke, PhD
 Eugene Shteyn, MS
 Matthew Tabaka
 Greta Knefelkamp
Contact us: SRTR@SRTR.org

Follow us:

@SRTRNews

Scientific Registry of Transplant Recipients

SRTR