Broader Geographic Sharing of Pediatric Lung Donors Improves Allocation Efficiency

Wayne M. Tsuang, MD Cleveland Clinic, Cleveland, Ohio

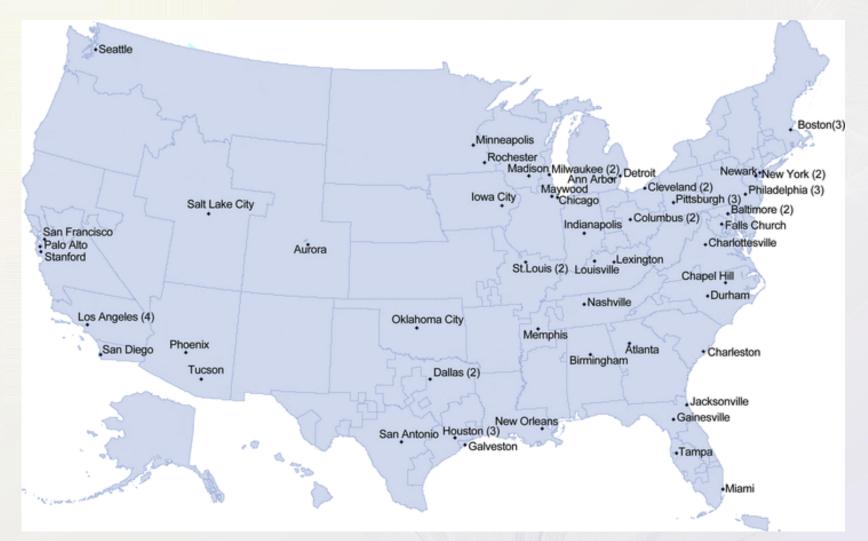
Presented May 3, 2015 at the American Transplant Congress conference held in Philadelphia, Pennsylvania.

Disclosures

Wayne M. Tsuang, M.D.
Assistant Professor, Pulmonary Allergy & Critical Care Medicine
Cleveland Clinic, Cleveland, Ohio

I have no financial relationships to disclose within the past 12 months relevant to my presentation. My presentation does not include discussion of off-label or investigational use products. I do not intend to reference unlabeled/unapproved uses of drugs or products in my presentation.

This work was supported wholly or in part by HRSA contract 250201000018C. The content is the responsibility of the authors alone and does not necessarily reflect the views or policies of the Department of HHS, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government.



Background

- US organ allocation system is focused on early transplant for pediatric candidates (age <18 years) to minimize the impact of end stage organ disease on lifespan and quality of life.
- In pediatric lung transplantation, allocation of donor lungs is limited by small number of donors within current geographic boundaries.

Background: Current Allocation Boundaries

Hypothesis

 Broader geographic sharing of pediatric donor lungs will increase pediatric candidate access to transplant.

Methods

- Study cohort: US lung and heart-lung transplant candidates from July 1, 2009 to June 30, 2011
- Child <12 years, adolescent 12-17 years, adult ≥18 years
- Thoracic Simulation Allocation Model (TSAM)
 developed by the Scientific Registry for Transplant
 Research (SRTR) was used to model impact of
 broader geographic sharing of adolescent and child
 donors.

Methods: Algorithm for Broader Sharing of Adolescent Donors

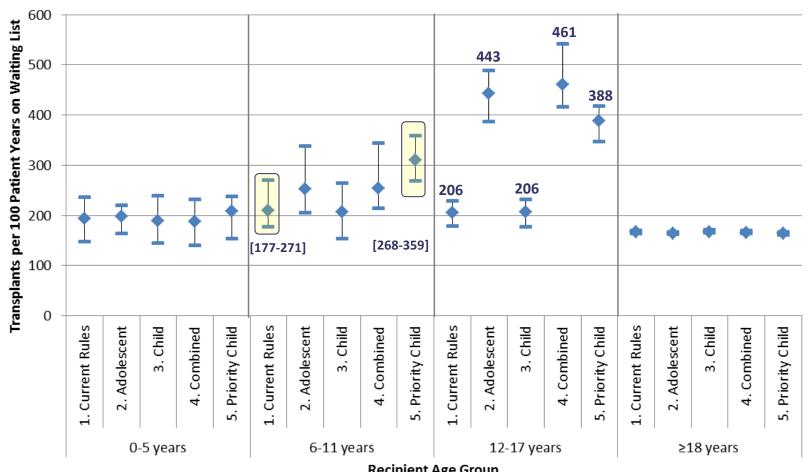
Current Allocation		Broader Geographic Sharing	
Geographic zone	Candidate	Geographic zone	Candidate
Local Donation Service Area (DSA)	1. Adolescent	Local DSA + 1,000 miles	1. Adolescent
	2. Child		2. Child
	3. Adult	Local DSA	3. Adult

Child: <12 years Adolescent: 12-17 years Adult: ≥18 years

Methods: Algorithm for Broader Sharing of Child Donors

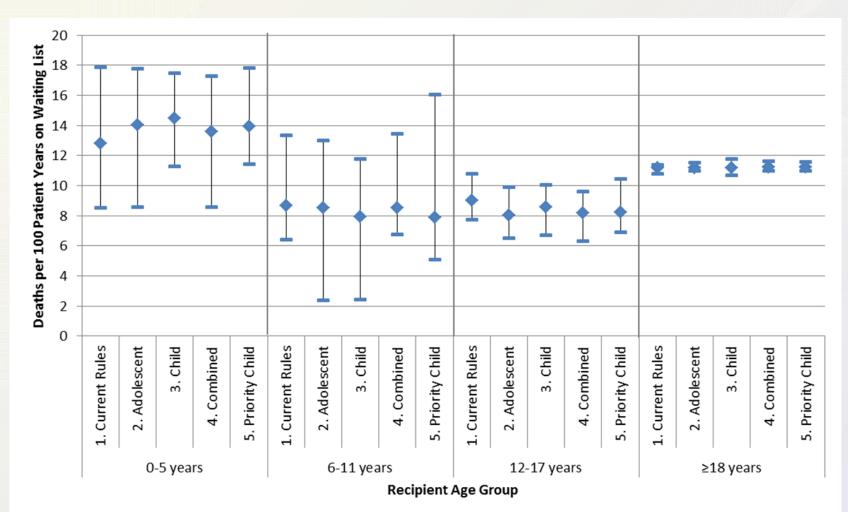
Current Allocation		Broader Geographic Sharing	
Geographic zone	Candidate	Geographic zone	Candidate
Local DSA + 1,000 miles	1. Child	Local DSA + 1,000 miles	1. Child
Local DSA + 500 miles	2. Adolescent	Local DSA + 1,000 miles	2. Adolescent
Local DSA	3. Adult	Local DSA	3. Adult

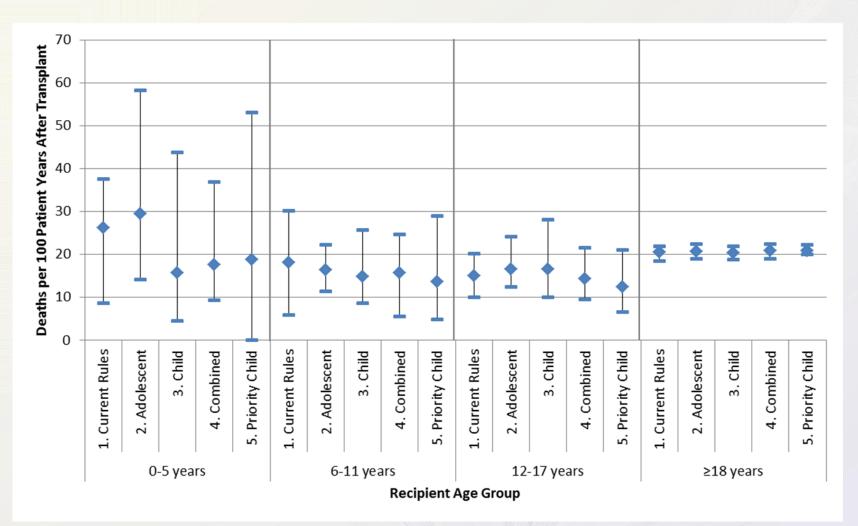
Child: <12 years Adolescent: 12-17 years Adult: ≥18 years


Methods: Algorithm for Prioritizing Children for Adolescent Donors

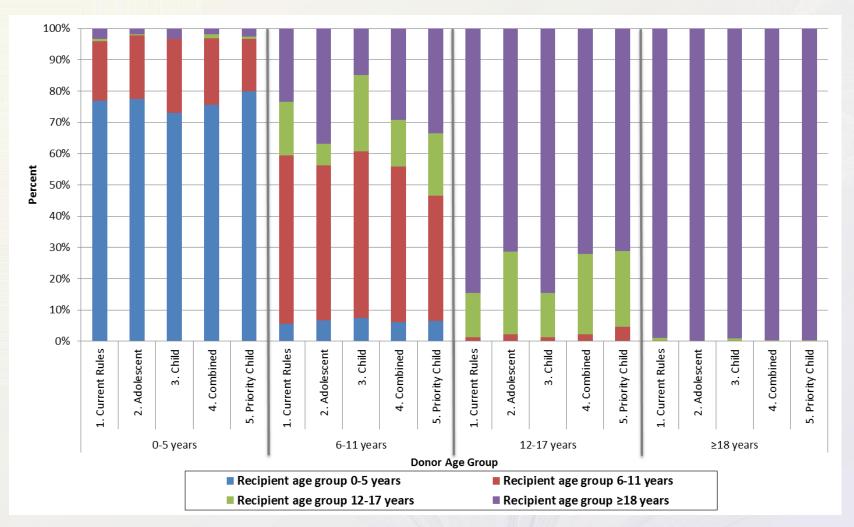
Current Allocation		Broader Geographic Sharing	
Geographic zone	Candidate	Geographic zone	Candidate
Local Donation Service Area (DSA)	1. Adolescent	Local DSA + 1,000 miles	1. Child
	2. Child		2. Adolescent
	3. Adult	Local DSA	3. Adult

Child: <12 years Adolescent: 12-17 years Adult: ≥18 years


Results: Transplant Rate by Age Group



Results: Wait-list Mortality by Age Group



Results: 1-year Posttransplant Mortality by Age Group

Results: Age Distribution of Donors and Recipients

Conclusions

- Broader geographic sharing of pediatric donor lungs may increase pediatric access to transplant.
- Adult transplant rate, wait-list mortality, and 1-year posttransplant mortality were not adversely affected.
- Some of our findings may be explained by the small number of pediatric candidates as compared to adults; the need for donor and candidate thoracic size matching; and LAS prioritization of donor lungs to the sickest candidates.

Acknowledgements

- Josh Pyke, PhD, SRTR
- Melissa Skeans, MS, SRTR
- Kevin Chan, MD, University of Michigan
- Tom Wozniak, MD, Indiana University
- Ajay Israni, MD, MS, University of Minnesota and SRTR
- Marshall Hertz, MD, University of Minnesota and SRTR
- Bertram Kasiske, MD, SRTR
- Maryam Valapour, MD, MPP, Cleveland Clinic and SRTR

