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U.S. organ allocation policy sequesters livers from deceased donors within arbitrary geographic boundaries,
frustrating the intent of those who wish to offer the livers to transplant candidates based on medical urgency.
We used a zero-one integer program to partition 58 donor service areas into between four and eight sharing
districts that minimize the disparity in liver availability among districts. Because the integer program necessarily
suppressed clinically significant differences among patients and organs, we tested the optimized district maps
with a discrete-event simulation tool that represents liver allocation at a per-person, per-organ level of detail. In
April 2014, the liver committee of the Organ Procurement and Transplantation Network (OPTN) decided in a
unanimous vote of 22-0-0 to write a policy proposal based on our eight-district and four-district maps. The OPTN
board of directors could implement the policy after the proposal and public-comment period.Redistricting liver
allocation would save hundreds of lives over the next five years and would attenuate the serious geographic
inequity in liver transplant offers.
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Liver allocation systems necessarily recognize geo-
graphical limits, because livers from deceased

donors cannot tolerate long transport times. Livers
are offered to U.S. transplant candidates in decreasing
order of medical urgency, as measured by the mod-
eled end-stage liver disease (MELD) score, within 58
geographic units, called donor service areas (DSAs),
that are grouped into 11 regions. In 1998, the U.S.
Department of Health and Human Services declared
its final rule of organ allocation: Neither place of resi-
dence nor place of listing shall be a major determinant
of access to a transplant (U.S. Department of Health
and Human Services 1998). MELD scores range from
six to 40; higher scores indicate a higher chance of
dying within 90 days if the candidate does not receive
a transplant (Freeman et al. 2002). However, a recent
analysis showed that a candidate with a MELD score

of 38 out of 40 points and who resides in a favorable
zip code had an 86 percent chance of receiving a liver
transplant in the next 90 days, whereas a candidate
with the same MELD score but residing in an unfavor-
able zip code had an 18 percent chance of receiving a
transplant and an 82 percent chance of dying without
a transplant in the next 90 days (Massie et al. 2011).

During the 15 years since the final rule was enacted,
powerful stakeholders raised political and legal road-
blocks that stymied several geographic-equity initia-
tives. Attempts to reduce geographic disparity engen-
dered such conflict within the liver transplantation
community that this period became known as the
liver wars. By bringing optimization and simulation
together in a novel redistricting approach to the prob-
lem, and by faithfully representing the details and spe-
cialized concerns of the liver transplant community
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within that mathematical program, we designed shar-
ing districts that renewed the community’s commit-
ment to equitably treating all candidates.

We exactly solved a zero-one integer program to
partition the DSAs into new sharing districts that min-
imize geographic disparity in liver offers, preserving
the DSA boundaries to protect important relation-
ships between donor hospitals and the organ pro-
curement organization (OPO) in each DSA. We eval-
uated the optimal district plans using a discrete-event
simulation of liver allocation that captures clinical
details, such as diagnoses, changes in medical status
and MELD score over time, and acceptance or rejec-
tion of liver offers, to demonstrate that redistricting
would save hundreds of lives and restore the princi-
ple of liver transplant prioritization for the most medi-
cally urgent patients irrespective of their locations. We
developed data-driven cost and organ transport mod-
els to answer financial and medical objections to redis-
tricting plans. Policy makers recently voted to open
our eight- and four-district redistricting proposals to
public comment, a necessary step before the policy is
finalized.

We organized the remainder of the paper as fol-
lows. We describe U.S. liver allocation policy and the
geographic inequity associated with the current pol-
icy, review related research, and introduce our redis-
tricting integer program. Then, we outline the oper-
ation of the liver simulated allocation model and
present the results of testing our district plans in
this patient-level simulation. Finally, we generalize
the lessons of this project for improving healthcare
systems with operations research.

Liver Allocation and Geographic
Disparity
This paper considers only the allocation of livers
from deceased donors in the United States. Living
liver donors direct their donations to specific recipi-
ents, and living donations comprise no more than a
few hundred of approximately 7,000 liver transplants
each year.

Each liver transplant candidate is assigned a MELD
score, and livers are offered in decreasing order of
MELD score to rescue the patients who most urgently
need a transplant to survive. Geographic disparity in

liver allocation means that severely ill candidates in
some parts of the country die waiting for an organ,
or move to another area to be near a different trans-
plant center if they have the means and the knowl-
edge to do so, whereas candidates in other parts of the
country who are less urgently in need receive a trans-
plant quickly because of the location of their trans-
plant center.

Each of the 58 local OPOs coordinates the donation
process for deceased donors within the geographic
boundaries of its DSA. The DSAs are grouped into
11 regions (Figure 1) based on historical relationships
between hospitals and transplant centers in the early
days of transplantation. In these regions, 133 centers
perform liver transplants. The DSAs contain between
zero and nine liver transplant centers. Seven of these
DSAs do not have a liver transplant center; livers
recovered in those DSAs are distributed to transplant
candidates elsewhere in the region. The regions con-
tain between six and 18 transplant centers.

Physicians and candidates can and do decline liver
offers, because the liver offered is of low quality or
for other reasons. An intricate hierarchy of allocation
based on clinical factors (blood type, pediatric status
of candidate, age of donor, MELD score, and waiting
time) dictates the order in which livers are offered.
Generally, the liver is offered first to the most medi-
cally urgent candidates within the DSA in which the
organ was recovered from the donor. If refused by
candidates within that DSA, the liver is offered to
the most medically urgent candidates in the region. If
refused by candidates in the region, the liver is offered
nationally.

Livers from deceased donors must be transplanted
quickly after being recovered. The cold ischemia
time, which is the time that the organ is stored
at a low temperature between the organ recovery
and the transplantation, must not be too long. The
limit on cold ischemia time is not binary; however,
the liver’s viability and the likelihood of successful
transplant decrease as a function of cold ischemia
time. Although the livers are rushed to the trans-
plant centers, geographic constraints on allocation are
unavoidable. Transporting the organ is only one of
the necessary tasks during this narrow time window;
therefore, allocating livers without regard to location
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Figure 1: The current liver allocation system includes 11 regions, as the shadings represent. The regions reflect
historical relationships among early transplant centers and were not designed to achieve any allocation goal(s).
Alaska, Hawaii, and Puerto Rico are shown in separate frames in this map and in the maps in Figures 2–5 and
Figures 7 and 8.

would be impossible. Organ transports at distances
over 1,000 miles are rare.

Deceased-donor liver offer rates and the transplant
rates for candidates with the same MELD show wide
geographic disparities (Massie et al. 2011, Roberts
et al. 2006). Other documented inequities include a
3.3-fold variation in death rates of candidates on the
waiting list, a 20-fold variation in transplant rates,
and 10-point differences in MELD at transplant for
candidates in different DSAs (Yeh et al. 2011). Geo-
graphic disparities even cause the observed dispari-
ties between liver transplant rates for Caucasians and
Hispanics because of the locations in which these
populations live (Volk et al. 2009). Some candidates,
usually those with more education and higher socio-
economic status, resort to chasing the organ supply
by listing at a distant transplant center. Liver trans-
plant candidates had a 20 percent lower risk of death
and a 74 percent higher chance of being transplanted
if they transferred from their initial-listing DSA to a
different one (Dzebisashvili et al. 2013).

Researchers disagree about the fundamental causes
of geographic disparities in liver transplantation.
Only a small fraction of the people who die in the

United States are eligible to be organ donors, and
across the DSAs, we see four-fold differences in the
death rates of eligible donors (Sheehy et al. 2012).
Either prevalence of illness necessitating transplant or
differential access to joining the transplant list might
cause these differences; the rate of new listings for
liver transplants per DSA is closely associated with
organ shortage, as measured by higher MELD score
at transplant (Yeh et al. 2011). The local OPOs and
hospital staffs play a role in medical management of
potential donors and obtaining donor consent; there-
fore, differences among OPOs might lead to more or
fewer donations (Ojo et al. 2005).

Liver allocation is contentious because liver trans-
plantation is a prestigious and lucrative undertaking.
For more than a decade, transplant centers and con-
gressional delegations in areas that benefit from the
current imbalance have strongly opposed changes to
liver allocation—disputes characterized as the liver
wars (Stolberg 1999).

Washburn et al. (2011) predicted that changing liver
allocation by sharing all livers within the existing
regions and bypassing the local DSA level of alloca-
tion would save 60 lives annually. We have shown,
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however, that regional allocation, while saving lives
overall, would worsen geographic disparity in the
MELD score at which candidates receive transplants
(Gentry et al. 2013). That the goals of reducing deaths
and offering more equitable access can conflict with
each other is puzzling, because if all candidates had
equal access to livers then fewer candidates would die
while waiting for an organ. The problem is that dras-
tic imbalances between demand and supply prevail
even among the larger regional groupings, given the
existing suboptimal regions. Sharing within optimal
districts would improve both metrics.

The potential of the optimized redistricting method
we present in this paper has broken a long-standing
stalemate over redressing geographic disparities in
liver allocation. A redistricting approach forces mem-
bers of the transplant community to endorse or reject
the goal of minimizing geographic disparity in liver
offers, rather than just object to some detail of a par-
ticular allocation plan. The constraints and objective
of the integer program are transparent and represent
a consensus of the liver and intestinal organ trans-
plantation committee of the Organ Procurement and
Transplantation Network (OPTN), after that group
worked extensively with our team to clarify the
requirements of a districting plan and the outcomes
to be monitored.

Offering an optimization tool to improve allocation
is not a panacea for resolving disputes. In practice, the
priorities and constraints might remain contentious,
even after the modeling and technical challenges
of redistricting are addressed, as in the example of
the Philadelphia City Council redistricting contest
(Gopalan et al. 2013). Altman (1997) argues that social
goals cannot be unambiguously characterized and
weighed quantitatively; therefore, optimal redistrict-
ing can never be neutrally implemented. Optimiza-
tion cannot create a helpful veil of ignorance (Altman
1997) about winners and losers in liver redistricting,
because the balance of existing inequities is clear to
most participants.

Related Research
Cope (1971) uses the term regionalization for
the problem of aggregating a finite, denumerable,
nonoverlapping set of units into districts in accor-
dance with a set of criteria. Regionalization—usually

called districting or redistricting—appears in many
contexts, with a diversity of criteria that might appear
in the objective, constraints, or exclusion rules, or be
embedded in heuristic district generation procedures.
Caro et al. (2004) offer an excellent, detailed, and
fairly recent survey of redistricting models.

The canonical redistricting problem is designing
political districts in which the important considera-
tions are contiguity and compactness of the districts
and strict constraints that districts must contain nearly
equal populations (Murphy et al. 2013). Although
competing definitions of compactness abound, some
compactness metrics have long been incorporated
straightforwardly into linear or integer programs
(Garfinkel and Nemhauser 1970). In contrast, although
districts can be unambiguously classified as contigu-
ous or noncontiguous, researchers only recently found
computationally tractable representations for contigu-
ity constraints (Shirabe 2009).

In the obvious formulation as a set-partitioning
optimization, computational hurdles to exact solu-
tions proved severe for most applications. Garfinkel
and Nemhauser (1970) used an implicit enumera-
tion scheme for calculating exact solutions and found
the largest solvable instances had about 50 popula-
tion units. Mehrotra et al. (1998) applied a branch-
and-price graph-partitioning methodology to parti-
tion 46 counties into six districts in South Carolina.
Birge (1983) formulated a quadratic program and
heuristic solution procedure to partition 83 coun-
ties into 38 districts for the Michigan Senate. To
resolve 35,000 meshblocks into 95 districts, George
et al. (1997) used a heuristic location-allocation algo-
rithm adapted from Hess et al. (1965), which itera-
tively refined the district centers. Our liver redistrict-
ing model employs the location-allocation constraints
suggested in Daskin (2010).

In assigning students to school districts, the focus
is usually on minimizing travel distance or busing,
while respecting school capacity limits and some-
times desegregation mandates. In this problem class,
computationally tractable algorithms do not always
guarantee contiguity and compactness of districts.
In Liggett (1973), the authors applied an implicit
enumeration method to show that desegregating
Pasadena schools did not require increasing the num-
ber of bused students. A heuristic and interactive
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approach to minimizing busing appeared in Ferland
and Guénette (1990). Caro et al. (2004) provided a com-
prehensive tool that minimizes travel while enforcing
capacity constraints at each grade level, racial-balance
constraints, stability constraints requiring a degree of
similarity to the current districts, contiguity, and com-
pactness. The resulting zero-one integer program can
usually be solved quickly, and solutions can be inter-
actively adjusted and reoptimized.

An early description of an optimal districting
model in healthcare, in which balancing demand
and provision of healthcare services is a constraint,
appeared in Ghiggi et al. (1976). Blais et al. (2003)
incorporated travel time on Montreal transit services
as a component of workload in designing equal-
workload districts for home healthcare workers with a
Tabu search heuristic. Using adjacency-tree represen-
tation to generate only contiguous districts, Zoltners
and Sinha (1983) surveyed several contrasting objec-
tives in designing sales territories: minimizing disrup-
tion from an existing sales territory map, minimizing
travel, and equalizing workload or sales potential.

Prior Work on Redistricting Liver Allocation
Other researchers have explored redistricting mod-
els for liver allocation; however, these models have
had significant limitations. First, previous studies
either defined geographic disparity with an implau-
sible metric or disregarded geographic disparity. Sec-
ond, previous studies defined efficiency by making
a strong but medically inaccurate assumption about
the functional relationship between liver viability and
transport distance. Third, previous studies employed
a notion of recipient-donor matching that does not
exist in liver transplantation, resulting in districts
optimized to an artifact of the input data. Fourth, pre-
vious studies neglected to model accept or decline
decisions that shape liver allocation and did not con-
sider the modern (2002 to present) MELD-score pri-
oritization of liver transplant candidates.

Disregarding geographic equity, Kong et al. (2010)
redistricted liver allocation to maximize an efficiency
metric of the number of successful transplants. Kong
et al. (2010) used a branch-and-price algorithm com-
bined with a geographic-cover decomposition scheme
to approximate solutions to the set-partitioning prob-
lem. Stahl et al. (2005) redistricted liver allocation

with an objective that balanced efficiency with geo-
graphic equity as measured by intradistrict transplant
rates, but were forced to use nine or fewer DSAs per
district because of computational challenges. Demirci
et al. (2012) applied geographic covers with a branch-
and-price approach to explore the efficient frontier in
a trade-off between efficiency and geographic equity,
allowing them to consider many districts that Stahl
et al. (2005) excluded.

The geographic-equity objective in both Stahl et al.
(2005) and Demirci et al. (2012) maximized the mini-
mum in-district viability-adjusted transplant rates per
waiting list candidate. The range of transplant rates,
however, is not a credible metric of geographic dis-
parity. The transplant rates per candidate, neglect-
ing MELD-score prioritization among waiting list can-
didates, are sensitive to differences in local waiting
list patterns that might distort the number of wait-
ing list candidates. We discuss the problem of sen-
sitivity to local waiting list patterns in the Input
Parameters for the Redistricting Zero-One Integer Pro-
gram section. In contrast to these efforts, we optimize
a pure geographic-disparity metric based on the bal-
ance of organs supplied and organs demanded by
patients who have priorities high enough to war-
rant transplants. Because geographic disparity causes
excess waiting list deaths, we simultaneously achieve
improved allocation efficiency, as measured by a
lower number of patients who die while on a wait-
ing list.

In creating a viability adjustment to penalize longer
organ transports, previous studies assumed that a
liver’s viability is a closed-form function of the
cold ischemia time and assumed that cold ischemia
time is a closed-form function of the organ trans-
port distance. The clinical transplant literature does
not include support for describing liver viability as
a function of the transport distance, because cold
ischemia time varies widely, almost irrespective of
the transport distance (Gentry et al. 2014). Moreover,
these studies assumed that patients accept or decline
liver offers based only on the organ transport dis-
tance. The studies also treated livers as wasted if they
were declined once; however, livers are not recovered
until they are accepted. When a liver offer is declined
because the transport distance is too long or for other
reasons, the liver is not wasted; it is offered to another
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patient. The clock does not start ticking until after a
patient and his (her) transplant team have decided
that the transport time for the liver is acceptable. In
our study, we handle distance by setting an upper
bound on transport time within a district as a feasi-
bility constraint.

Prior work defined efficiency as a count of the
number of intradistrict liver transplants, balancing
the purported lower likelihood of finding a matched
recipient in smaller districts against the lower like-
lihood of a successful liver transplant with longer
transport distances in larger districts. An affinity
value was calculated between every pair of DSAs,
representing the likelihood of donated livers flowing
from DSA i to DSA j in a geography-independent
allocation scheme. The affinity value was variously
based on wait list population sizes (Stahl et al. 2005)
or on a pre-MELD-era simulation (Shechter et al.
2005) of liver allocation (Kong et al. 2010). Com-
bining the affinity values with a quantity represent-
ing the fraction of organs from each DSA that were
expected to be allocated at a national level, these stud-
ies estimated the number of intradistrict transplants
for various potential districts. This form of penalty
for smaller districts reflects an assumption that liv-
ers leave the districts and reach a national level of
distribution because no suitably matched recipient
resides within the district. But, unlike kidney trans-
plants, liver transplants do not require careful match-
ing between donor and recipient. The percentage of
livers that flow from one DSA to another in simula-
tion and in actual situations depends on the timing
of the donations, the evolution of medical urgency
among transplant candidates, the allocation hierarchy,
and the decisions to accept or decline organs. Donors
in DSA i cannot be more compatible with the patients
in DSA j than with the patients in DSA k.

This efficiency metric also treats livers not accepted
within a district as if they were discarded; in reality,
livers not accepted within a district are often trans-
planted at a national level. Livers reach a national
level of distribution because the livers are higher
risk or lower quality than most (Lai et al. 2012),
not because of compatibility issues. A handful of
aggressive transplant centers perform most trans-
plants with nationally distributed livers (Garonzik-
Wang et al. 2013). Because the simulation tool in

Shechter et al. (2005) assumed all offers are accepted,
none of these dynamics would have been present in
the input data for redistricting in the studies we have
been discussing. In reality, a high or low intradis-
trict transplant rate would reflect the distribution of
aggressive centers across the districts. Some livers
are destined to aggressive centers regardless of the
arrangement of the districts; therefore, zeroing out the
value of a liver donated in DSA i and transplanted in
DSA j because the district plan puts those two DSAs
in different districts would not make sense.

Finally, any redistricting optimization study must
simplify or remove many medical details to reach
a stylized mathematical programming representation
of liver allocation. The challenge is then to answer
transplant stakeholders’ questions about the impacts
of redistricting, when many clinical details are not
explicitly retained in the optimization model. Kong
et al. (2010) and Demirci et al. (2012) tested their opti-
mized district plans using a patient-level allocation
simulation; however, neither the simulation nor the
mathematical formulation incorporated MELD scores,
the current mainstay for prioritizing patients, or mod-
eled decisions to accept or decline offers. To answer
questions about the clinical impacts of redistricting,
we tested our optimal district plans in a sophisticated,
validated patient-level simulation that handles MELD
scores, models accept or decline decisions, and that
the transplant community accepts. We also carried out
an extensive patient-level cost analysis to predict the
financial impacts of redistricting.

Optimal Redistricting for
Liver Allocation
The Department of Health and Human Services over-
sees transplantation; the OPTN is responsible for
developing organ allocation policies through its sev-
eral committees (McDiarmid et al. 2008). We worked
closely with the liver and intestinal organ transplanta-
tion committee over three years to develop the redis-
tricting model we present in this paper. The primary
goals of redistricting were to reduce geographic dis-
parity in liver allocation and to reduce the number
of deaths of patients on the liver transplant waiting
list without imposing an unacceptable organ trans-
port burden.
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Our redistricting integer program partitions the set
of DSAs into a fixed number of districts to minimize
the sum of absolute differences between the num-
ber of deceased-donor livers recovered in each district
and the ideal number of livers that would be offered
in each district if each liver was given to the most
medically urgent candidate in the country. That is, we
minimize the number of livers misdirected away from
the most medically urgent candidates. The liver and
intestinal organ transplantation committee chose not
to revise the DSA boundaries, because each DSA has
an OPO with staff who have long-standing relation-
ships with the donor hospitals in the DSA. By con-
trast, the 11 regions are administrative groupings that
could be rearranged without major upheaval.

The formulation includes location-allocation con-
straints that select one DSA as the center of each dis-
trict and assign each DSA to the district center clos-
est to it to produce compact regions. The districts we
design are essentially contiguous, although our for-
mulation does not guarantee this. Where our districts
depart from contiguity, it is because the DSA bound-
aries are not uniformly contiguous (Figure 2). Sev-
eral DSAs are the union of noncontiguous territories;
the division of Texas into its three DSAs is a striking
example.

The liver committee approved a handful of con-
straints on the district plans. The committee members
asked to examine the plans for districts with between
four and eight districts; therefore, we solved the redis-
tricting program with numbers of districts fixed at
four, five, six, seven, and eight. As a side constraint on
this zero-one integer program, the committee set an
upper bound on the transport time between the center
of each district and each DSA included in the district.
The committee asked to examine plans in which this
upper bound was set at four hours and at five hours,
but our experiments found that an upper bound of
three hours does not harm the other outcomes and
yields districts that are more broadly acceptable. The
committee required that the expected number of wait-
ing list deaths must either decrease or remain con-
stant. Waiting list deaths are not explicitly represented
in the integer program; in the Liver Simulated Alloca-
tion Model and Results section, we describe how these
can be estimated with the liver simulated allocation
model (LSAM), given any particular district plan.

Later in the process, the committee added a new
constraint—that every district must contain at least
six transplant centers. This requirement became clear
when members objected to a provisional district
map because a district contained only two trans-
plant centers. Deceased-donor livers vary in qual-
ity, and marginal livers are more likely to be used
and less likely to be discarded when more competi-
tion exists among transplant centers (Halldorson et al.
2013, Garonzik-Wang et al. 2013). Some people believe
that the current lack of competition in DSAs with only
one transplant center causes some OPOs to not pur-
sue some donors whose livers would have been trans-
plantable. Unlike voting districts, liver allocation dis-
tricts need not be of equal size or population; rather,
the goal is that districts achieve a similar balance of
supply and demand. The lower bound on number of
transplant centers, however, effectively places a lower
bound on the size of the districts.

Throughout the process, members of the committee
sought to understand the trade-off between the fair-
ness of the system and the distance the livers would
have to travel. Still, we were forced to abandon a
formulation of the objective that used a linear com-
bination of fair and far metrics, because the weight-
ing parameter lacked meaningful units, which made
the redistricting procedure opaque. Transparency is
essential when making policy regarding a collec-
tive resource such as deceased-donor organs; as a
result, all the numerical parameters in our final zero-
one integer program are concretely defined quantities
familiar to transplant stakeholders.

An earlier version of our LSAM (Gentry et al. 2013)
minimized a sum of the squared-distances compact-
ness metric, with geographic fairness appearing as
a constraint. Hess et al. (1965) used a population-
weighted version of this compactness metric in a
political-redistricting problem. Minimizing the sum
of squared distances does not guarantee contiguous
districts. In our application, minimizing the sum of
squared distances yielded districts with an unaccept-
ably high degree of noncontiguity. Another difficulty
with this formulation is selecting and (or) iteratively
refining the fixed district centers, because the solu-
tions are sensitive to this basically arbitrary selection.

We reaped the benefit of 40-plus years of hardware
and software development and were able to solve our
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Figure 2: Of the 58 local DSAs in the United States, several are defined as unions of noncontiguous geographic
blocks.

small 58-unit districting problems in about an hour on
a personal computer using the general mathematical
programming solver OPL/CPLEX, version 12.1.

Input Parameters for the Redistricting Zero-One
Integer Program
The supply of deceased-donor livers for each DSA can
be defined as the number of livers transplanted from
adult donors in the DSA in 2010.

The demand for liver transplantation in each DSA
is difficult to define for several reasons. The popula-
tion on the liver waiting list in each DSA is dynamic.
New transplant candidates arrive, and some candi-
dates are removed because they have died, become
too sick to transplant, or recovered without a trans-
plant. Also, each candidate’s MELD score fluctuates
over time as his (her) disease advances or condition
improves, or medical crises occur. We approximate
the demand for liver transplantation by capturing all
incident (arriving) adult candidates in each DSA dur-
ing 2010 and recording their highest MELD scores as
of December 31, 2010. Notionally, we distribute the
livers donated in 2010 to this static pool of candidates
in decreasing order of MELD score until the supply
is exhausted, and we count the number of livers that
would have been allocated to each DSA under this

distribution system as the ideal number of transplants
for that DSA.

We considered other methods for defining the
transplant demand in each DSA. For example, we
could use the raw counts of new waiting list candi-
dates in 2010; however, that method would be sen-
sitive to the number of low-MELD-score candidates
added. Because candidates with a MELD score below
15 do not derive a survival benefit from transplanta-
tion, and because some candidates with even mod-
erate MELD scores stand little chance of receiving a
liver offer in some parts of the country, transplant
centers differ in their practices of listing candidates
with low MELD scores. The method we chose has the
advantage of being insensitive to local handling of
such candidates.

Because transport delays can extend the cold is-
chemia time, thus impacting the likelihood of a suc-
cessful transplant, we created an intricate geographic
information system (GIS) model for liver transport
time (Gentry et al. 2014). Livers are transported by
car, by chartered plane, or occasionally by helicopter.
We located hospital street addresses, and for every
donor hospital and transplant center pair, we calcu-
lated via Google the driving time between the hos-
pitals directly and to each hospital’s nearest airport.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
4.

84
.1

92
.1

01
] 

on
 2

0 
O

ct
ob

er
 2

01
5,

 a
t 1

4:
15

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Gentry et al.: Redistricting Liver Allocation
470 Interfaces 45(5), pp. 462–480, © 2015 INFORMS

We created a separate model to estimate flying time
between airport pairs. We also added logic to select
driving or flying as the transport mode and thereby
estimated a transport time between each donor hospi-
tal and transplant center pair. Finally, we aggregated
these times to compute a transplant-volume-weighted
average transport delay between each pair of DSAs,
as we outline in the appendix.

Liver Simulated Allocation
Model and Results
Although we solved the LSAM program exactly to
obtain district plans similar to those in Figures 3
and 4, our mathematical programming model (see
the appendix) reduces the true dynamic, medically
complex system to a static and uniform quantifica-
tion. Transplant care providers, well acquainted with
the temporal evolution of liver disease and with the
nuanced judgment required to decide whether a par-
ticular organ would benefit one of their patients, are
unlikely to trust in such an obviously truncated rep-
resentation of liver allocation.

The LSAM is a discrete-event simulator that cap-
tures dynamic patient-level detail and facilitates com-
parison of proposed liver allocation rules (Thomp-
son et al. 2004). Over the past decade, policy makers

Figure 3: Minimizing disparity in liver allocation using four organ-sharing districts yields these districts.

have relied heavily on the LSAM to project outcomes
of allocation changes and inform decisions. Another
team of researchers initially constructed the LSAM,
but we worked with our colleagues at the Scientific
Registry for Transplant Recipients to enhance the tool
so it could answer redistricting questions. In partic-
ular, we added a resampling module to extend the
simulation from a one-year to a five-year projection
and integrated our transport-time estimates.

Figure 5 depicts the operations of the LSAM. We
simulate liver allocation from January 1, 2006 to
December 31, 2010, starting with the patients on the
waiting list on January 1, 2006 and resampling patient
arrivals to the waiting list thereafter. We model the dis-
ease progression of each patient on the waiting list by
resampling every MELD score update independently
from the MELD history of a similar patient, matched
on clinical characteristics. When a liver arrives, it is
offered to the highest-priority patient according to
the allocation scheme being simulated. We model the
probability of acceptance for each offer using a logis-
tic regression based on the organ quality, the patient’s
medical history, and the transport distance. If a patient
declines an offer, the organ is offered to the next-
highest-priority patient. Simulated patients might die
on the waiting list, be removed from the waiting list
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Figure 4: Minimizing disparity in liver allocation using eight organ-sharing districts yields these districts.

for other reasons, die after receiving a transplant, or
have a transplant fail and go back on the waiting list.

The LSAM provides detailed patient-level output,
including deaths of candidates on the waiting list,
deaths of patients after transplant, liver discards,

Resampled
patient
arrivals

Waiting list
+

Resampled
MELD
updates

Liver
allocation

Accept or
decline

liver

Post-transplant
outcome
model

Post-
transplant

deaths

Relisting after transplant fails

Offer declined

Waiting list
deaths and
removals

District plan

Resampled
organ

arrivals

Figure 5: Policy makers use the LSAM to compare alternative organ allocation schemes.

transport distances and times, and the MELD scores at
which patients are transplanted. Only this type of sim-
ulation could have predicted the age distribution and
racial and ethnic composition of the transplanted pop-
ulation, the post-transplant death and relisting rates,
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and the pattern of organ flow across local boundaries
under different allocation schemes. All these predic-
tions are essential for policy makers.

Over five years, we ran 10 simulations using
the LSAM for each allocation scheme tested. As a
variance-reduction technique, we used the same set
of 10 resampled input files and the same random-
number-generator seed for each allocation scheme
tested. Using the sign test, we performed pairwise
comparisons between output metrics for significance
at the p < 0005 level, comparing the current allocation
scheme with each of the other schemes.

Local allocation means livers are offered to the most
medically urgent candidate in the DSA. Regional allo-
cation means livers are offered to the most medically
urgent candidate in the regions defined by the current
11-region map in Figure 1. National allocation means
all livers are offered to the most medically urgent can-
didate anywhere in the country, regardless of trans-
port time or distance. Circular allocation means each
liver is offered to the most medically urgent candidate

Allocation Districts Transport (hrs) Misdirected Std dev MELD Net wait deaths Net deaths

Local 11 — 21363 3001 0 0
Regional 11 — 11317 3026 −165 −122
National 1 — 0 1066 −344 −510
Circular — 500 miles — 2070 −244 −112
Redistrict 4 2.5 Infeasible Infeasible Infeasible Infeasible
Map, Figure 3 4 3 128 1087 −554 −581
Redistrict 4 4 50 2011 −502 −520
Redistrict 5 2.5 Infeasible Infeasible Infeasible Infeasible
Redistrict 5 3 129 2001 −468 −442
Redistrict 5 4 76 2009 −479 −539
Redistrict 5 5 49 2005 −461 −466
Redistrict 6 2.5 Infeasible Infeasible Infeasible Infeasible
Redistrict 6 3 136 2012 −433 −465
Redistrict 6 4 88 2022 −384 −353
Redistrict 6 5 62 2017 −422 −520
Redistrict 7 2.5 407 2076 −379 −376
Redistrict 7 3 149 2004 −374 −382
Redistrict 7 4 97 2024 −358 −387
Redistrict 8 2.5 544 2078 −325 −304
Map, Figure 4 8 3 156 2008 −332 −342
Redistrict 8 4 109 2024 −357 −375
Redistrict 11 3 276 2044 −211 −240

Table 1: The liver committee’s primary charge was to reduce disparity (i.e., to reduce the standard deviation of
median MELD score at transplant); however, limiting transport time and reducing the number of deaths were
also important.
Note. Boldface rows correspond to the district maps shown in Figures 3 and 4, which were released in the liver
committee’s concept document on redistricting.

within 500 miles of the donor hospital. In all redis-
tricting plans, livers are offered to the most medically
urgent candidate in the district.

In Table 1, we report formative redistricting results
concerning the trade-offs among waiting list deaths
and total deaths, the upper bound for transport time,
and two metrics of geographic disparity. The zero-
one integer program minimizes the number of misdi-
rected livers, that is, the sum of absolute differences
between the ideal number of livers and actual num-
ber of livers transplanted in each district. The liver
committee, however, has focused on a different met-
ric of geographic disparity—the standard deviation
of median MELD score at transplant across DSAs.
MELD score at transplant is a natural and routine
metric for transplant stakeholders, unlike our notion
of misdirected livers. Moreover, the explicit organiz-
ing principle of liver allocation is to offer the liver
to the most medically urgent candidate. The standard
deviation of median MELD at transplant across DSAs
summarizes the variability in medical urgency for
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candidates who reach the priority needed to receive a
liver transplant in different parts of the country. More
fair and equitable distribution of livers is associated
with a lower standard deviation of the median MELD
score.

All quantities in the last three rows of Table 1 are
statistically significantly different (p < 0�05) from the
values for the current allocation system (first row)
based on the sign test. In local allocation, livers are
offered to the most medically urgent candidates in the
DSA. Regional allocation uses the existing 11 regions;
however, livers are offered to the most medically
urgent candidates in the region. National allocation
means all livers are offered to the most medically
urgent candidates in the country. Circular allocation
means each liver is offered to the most medically
urgent candidate within 500 miles of the donor hos-
pital. In all the redistricted plans, livers go the most
medically urgent candidates in the district. The table
includes two factors that were design parameters for
redistricted maps: the number of districts and the
limit on transport time from any DSA to the district
center. The redistricting objective was misdirected liv-
ers, which is the sum of absolute differences between
the actual and ideal number of livers available in each
district. The standard deviation of the median MELD
score at transplant across DSAs is another metric of
geographic disparity. Net wait deaths is the average
difference between the number of deaths of patients
on the waiting list in the allocation scheme being
tested and the number of deaths of patients on the
waiting list in local allocation. Net deaths is the aver-
age difference between the total number of deaths in
the allocation scheme being tested and the total num-
ber of deaths in local allocation.

Table 1 demonstrates some discrepancies between
these two metrics of geographic disparity. In a
national system, the number of misdirected livers is
zero per our definition, which treats all transplant
candidates as interchangeable and treats all livers as
simultaneously offered and uniformly accepted. Dis-
crepancies exist between misdirected livers and the
MELD-score measure of inequity for several reasons:
(1) livers can only be offered to candidates who are
waiting when the liver becomes available, (2) livers
are offered according to blood type and other clinical
criteria, and (3) liver offers are sometimes declined.

For example, even in a national distribution system,
the LSAM predicts some variability in the median
MELD score at transplant per DSA; thus, 1.66 is close
to the lowest achievable value for this measure of geo-
graphic disparity.

We asserted that regional allocation with the exist-
ing 11 regions would worsen geographic disparity
compared with local allocation. Comparing the first
two rows of Table 1, the standard deviation of median
MELD score increases from 3.01 for local alloca-
tion to 3.26 for regional allocation. To make clear
whether this difference should be seen as significant,
for each district plan, Figure 6 shows the range of
measured standard deviation of median MELD score
at transplant over 10 simulation replications. Regional
allocation is demonstrably less equitable than local
allocation, and both local and regional allocation are
significantly less equitable than any of the redistricted
alternatives on this metric.

For any fixed number of districts, the objective
value to be minimized (i.e., the number of misdi-
rected livers) decreases as we relax the constraint on
transport time. Our estimates of the standard devi-
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Figure 6: (Color online) For district plans with varying numbers of dis-
tricts and varying upper bounds on transport time, the range of values
over 10 simulations of the sample standard deviation of median MELD
score at transplant overlaps to a significant extent for redistricted plans.
The exceptions are the district plans with a 2.5-hour transport limit, which
appears to be too short to provide equitable allocation.
Note. Abbreviation: dct represents number of districts. These infeasible
combinations are not shown: four, five, and six districts with 2.5-hour
transport-time limit.
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ation of median MELD at transplant, however, do
not strictly decrease as we relax the constraint on
transport time. Figure 6 shows that the small differ-
ences in Table 1 between the measured standard devi-
ations of MELD are mostly within the range of simu-
lation error. All district plans with between four and
eight districts yield roughly the same reduction in
geographic disparity, except the district plans under
the strictest 2.5-hour transport-time constraint, which
seems to be too tight a bound to allow geographically
equitable distribution of livers. A strong trade-off be-
tween resolving geographic inequity and relaxing the
transport-time constraint or increasing the number of
districts is not apparent in Figure 6, although the fig-
ure shows what might be a slight trend toward higher
MELD-score variation with more districts.

In contrast, Table 1 does indicate a trade-off between
the number of districts and the number of patients on
the waiting list and number of total deaths. We could
explain this by better timing; in fewer larger districts,
a critically ill candidate might be more likely to receive
an offer in time to save the candidate’s life.

One alternative allocation scheme that has gener-
ated interest is circular allocation, which gives pri-
ority to candidates within a fixed distance of each
donor hospital. Both heart and lung allocation pro-
ceed from local DSAs to concentric-circle geographic
zones (Colvin-Adams et al. 2012). The advantages of
circular allocation are simplicity and transparency;
however, circular allocation is an ad hoc approach and

Figure 7: Compared to current local allocation (left), a redistricting plan with four districts (right) markedly
reduces geographic disparity in the median MELD score at which candidates are offered transplants.

should be expected to perform poorly relative to opti-
mal districts, at least with respect to the metric being
optimized. Circular allocation with a 500-mile radius
would require about the same organ transport dis-
tance and time as regional allocation with 11 districts.
Indeed, compared to the existing 11 regions, circular
allocation is fairer; however, compared to any of the
optimized district systems, circular allocation is less
fair, as measured by standard deviation of median
MELD score at transplant. In Table 1, we have also
included an example of an optimal district plan with
11 districts for comparison with the existing 11-region
system, although policy makers focused on options
having between four and eight districts.

The maps in Figures 7 and 8 offer another illus-
tration of reduced geographic disparity under redis-
tricting. These maps show areas in which the median
MELD at transplant is very low or very high as the
lightest and darkest areas, respectively. Areas marked
as none are DSAs without liver transplant centers.
Many transplant centers have either very abundant
access (lightest color) or very poor access (darkest
color) to liver offers; redistricting would give most
areas of the country similar access to liver offers.

Figures 7 and 8 also show that these redistricting
plans would not bring the MELD score at transplant
for California transplant centers in line with the rest of
the country. Under any feasible district plan, the dis-
trict containing California will have the lowest ratio
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Figure 8: Compared to current local allocation (left), a redistricting plan with eight districts (right) markedly
reduces geographic disparity in the median MELD score at which candidates are offered transplants.

of donors to new liver transplant candidates (another
rough metric of liver availability). That is, Califor-
nia’s transplant candidates might be so disadvan-
taged by California’s geographic isolation from areas
with higher donor availability that even candidates in
optimal districts will have insufficient access to liver
offers.

Addressing Other Concerns of
Transplant Stakeholders
Changing the geographic hierarchy of liver allocation
would have a huge impact on transplant stakehold-
ers. A proposed policy change is likely to be shelved
if decision makers find the impacts on transport time,
minority and pediatric populations, or especially
costs, to be unpalatable. These aspects of the redis-
tricting problem are not primary; we do not explicitly
represent them in the objective or constraints of the
zero-one integer program, except for the transport-
time bound. To explicitly represent every quantity of
interest in liver allocation in a mathematical program
is almost impossible, because the problem size would
explode at this level of detail. Rather, we design the
most equitable district plan that is feasible, given a
limited set of constraints, and subsequently evaluate
other impacts.

Table 2 compares the median transport time,
median distance, percentage of organ transports that
require flying, total organ transport cost, and total
cost for the primary redistricting alternatives. We

used the LSAM’s patient-level output data to estimate
the costs for transporting organs and for pretrans-
plant, transplant, and post-transplant care. Adapt-
ing from Salvalaggio et al. (2011) and Axelrod et al.
(2014) regression models with spline terms that were
built using historical cost data, we demonstrated
that redistricting would be either cost neutral or
cost saving compared with the existing allocation.
Although our four- and eight-district plans would
substantially increase the cost of transporting livers,
these plans would decrease costs because severely ill
patients would get transplanted more quickly instead
of remaining in the hospital over extended periods
of time. The costs of transporting organs are ulti-
mately covered by the charges for transplantation.

Median Median Transport Total
time distance Flying cost cost

Allocation (hours) (miles) (%) (millions) ($) (millions) ($)

Local 107 122 53 298 9,268
Regional 109 194 66 329 9,150
Four districts 203 419 84 467 9,282

(Figure 3)
Eight districts 200 243 73 383 9,145

(Figure 4)

Table 2: Redistricting would minimally extend transport times and would
be either cost neutral or cost saving, because the increased organ trans-
port costs are offset by reductions in patient-care costs. The columns show
median transport time, median distance, percentage of organ transports
that require flying, total organ transport cost, and total organ transport
plus patient-care cost.
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Transplanted recipients might (or might not) experi-
ence cost changes, because private or public insurance
generally covers liver transplantation. However, even
revenue-neutral cost shifts would be disruptive for
transplant centers, hospitals, and OPOs, particularly
because the pretransplant care costs are not gener-
ally borne by transplant centers. Gentry et al. (2015)
includes a full report of the cost model.

Geographic disparities in liver transplantation have
also negatively affected Hispanic patients, because
the Hispanic population is not uniformly distributed
throughout the country. Another advantage of redis-
tricting is that it would cause a statistically significant
increase in the percentage of transplants offered to
Hispanic candidates—from 14.0 to 14.7 percent under
the four-district plan in Figure 3; the Minority Affairs
Committee welcomed this news. Pediatric candidates
would comprise a higher percentage of transplants
under redistricting, rising from 7.1 to 7.7 percent with
the eight-district plan in Figure 4 or 8.5 percent with
the four-district plan in Figure 3. This is encouraging
news, because the allocation system explicitly favors
pediatric candidates.

Although the persistent geographic inequity in liver
allocation is universally acknowledged, no uncontro-
versial metric exists to represent the unequal access
that candidates have to liver offers. Lest this ambi-
guity be a barrier to resolving the problem, at its
November 2012 meeting, the OPTN board of direc-
tors directed every organ-specific committee to define
a primary metric of geographic disparity in allo-
cation. In our zero-one integer program, we mini-
mized a quantity we call misdirected livers; however,
the liver committee used the standard deviation of
median MELD score at transplant to evaluate the dis-
trict plans. Other measures of geographic disparity
could be proposed, each with its own drawbacks. For
example, the variability in waiting list death rates per
DSA is a direct measure of the primary outcome for
patients; however, the number of deaths in each DSA
is too small to be significant in measuring differences
between allocation schemes, and this metric might
also be influenced by varying local decisions about
whether and when to add low-priority candidates to
the waiting list.

One remaining concern for some stakeholders is
whether a fixed-district plan will perform well over

time. District boundaries might need adjustments as
populations shift and transplant centers open and
close. In particular, Puerto Rico’s first liver trans-
plant program opened in late 2012; therefore, we did
not account for it in the district plans we present
in this paper. A recently available drug that cures
Hepatitis C might change the balance of supply and
demand, because Hepatitis C is a frequent indica-
tion for liver transplant. Most of these developments
will move slowly, and we do not anticipate that
the district boundaries would be revised more often
than once per decade. We have conducted sensitiv-
ity analyses (Gentry et al. 2013) demonstrating that
districts designed using 2006 input parameters per-
formed extremely well in simulations using 2010 data.

The next frontier for operations research in trans-
plant policy making is building game-theoretic behav-
ior models that predict how changes in organ alloca-
tion rules are likely to change decisions to accept or
decline organ offers. At present, this is a weakness
of the LSAM and other organ allocation simulators;
however, success in building responsive acceptance
models to replace simple logistic regression on histor-
ical data will not come easily. The available data on
offers and refusals defy explanation and do not seem
to fit any rational-choice assumption (Alagoz et al.
2007). Although physicians must enter a refusal rea-
son when an organ is declined, the reasons given are
sometimes inconsistent with the clinical outline of the
case.

Conclusion
On April 1, 2014, the liver committee decided in a
unanimous vote of 22-0-0 to prepare a policy pro-
posal based on the four-district plan (Figure 3) and
the eight-district plan (Figure 4). Following the June
release of a concept document about redistricting, in
September 2014, the OPTN convened a public forum
on redistricting, which was its most highly attended
forum in history. After considering revisions based
on discussions at the forum and following a required
public-comment period, the policy could be imple-
mented with the approval of the OPTN board of
directors. By creating a transparent, quantitative opti-
mization model for liver redistricting, we achieved an
unprecedented consensus on a policy that promises to
save lives and make liver allocation more equitable.
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Why was this redistricting project transformative;
why did it bring the liver community to a new res-
olution to reduce geographic disparities? One reason
might be the clarity of optimizing a concretely stated
objective to break the cycle of opponents repeat-
edly challenging any proposed plan by proposing
a slightly different plan. The sustained participa-
tion of many transplant professionals in constructing
the objective, constraints, and evaluation metrics
undoubtedly generated confidence in the feasibil-
ity and effectiveness of the district plans. A redis-
tricting model would not have been persuasive to
the transplant audience if we had not explicitly
engaged the complex medical, ethical, historical, and
practical dimensions of the problem. Validating our
district plans with a patient-level simulation was
indispensable.

We likely had more credibility as partners in
using operations research to support transplantation
because our team had been influential in optimiz-
ing kidney paired donation (Segev et al. 2005, Gen-
try et al. 2007, 2009). Our simulations quantifying the
benefits of kidney paired donation helped Congress
pass the necessary legislation (U.S. Congress 2007).
We donated algorithms, software, and research time
to the OPTN as it established a U.S. registry to facili-
tate kidney exchanges between transplant candidates
whose intended living donors were incompatible.

These lessons can be taken as generalizable rules
for using operations research to make a meaningful
impact in healthcare: when the mathematical formu-
lation of a healthcare problem must be significantly
simplified, answer providers’ clinical questions with
medically realistic simulations or a trial application of
your solution; commit to a sustained and deliberate
relationship with the healthcare providers and admin-
istrators involved, taking the time to fully explore
goals and feasibility constraints; and emphasize the
advantages of a quantitative approach to designing
systems that better serve patients and providers.

Appendix. Zero-One Integer Programming
Formulation of the Liver Redistricting Model
The set I consisting of mutually exclusive, geographically
defined donor service areas (DSAs) i is to be partitioned
into N districts. We use a location-allocation formulation as
presented in Daskin (2010) to create (usually) contiguous
districts for liver sharing. We choose one DSA as the center

of each of the N districts. Binary decision variables Yk are 1
if DSA k is assigned as the center of a district, and 0 if it is
not assigned. Another set of binary decision variables, Wik,
are 1 if DSA i is in the district with center at DSA k, and
0 if not. For clarity, we also use the notation K≡I for the
set of DSAs, wherever an element k ∈K should be taken as
a candidate center of a district.

Let the number of livers recovered for transplantation in
DSA i be di (during a specific time window). We define the
ideal or perfect number of donors pi for each DSA i as the
number of transplants that would have occurred in DSA i
if all

∑

i∈I di livers were distributed in order of decreasing
MELD score to all candidates who joined the waiting list
during that time window, assuming all candidates accept
any offers. Let hi be the number of transplant centers in
DSA i, and let h be the lower bound on the number of
transplant centers per district.

We calculate �ij as the mean of the transplant-volume-
weighted distance between donor hospitals in DSA i and
transplant center in DSA j , and the reverse. Let Mij con-
tain all pairs 4T 1H5 consisting of a transplant center T in
DSA i and a donor hospital H in DSA j , where the dis-
tance between these is �̂T 1H . In 2010, each transplant cen-
ter T performed tT transplants where the total number of
transplants in DSA i is ti, and each donor hospital H pro-
duced dH donors where the total number of donors in DSA j
is dj . Then, we calculate the symmetric transplant-volume-
weighted distance �ij as follows:

�ij =
∑

4T 1H5∈Mij

(

tT
ti

)(

dH
dj

)

�̂TH +
∑

4T 1H5∈Mji

(

tT
tj

)(

dH
di

)

�̂TH 0 (1)

Finally, �ijk is an indicator, set to 1 if �ij < �ik, and 0 if
not. The �ijk appear in the constraints, which enforce that
every DSA i must be assigned to the district with the nearest
center.

To calculate the symmetric transplant-volume-weighted
transport time �ij between DSAs i and j , the transport times
are weighted similarly to Equation (1), replacing distance
�̂TH with estimated transport time �̂TH between transplant
center T and donor hospital H . Gentry et al. (2014) report
our methodology for estimating the transport time between
any two hospitals. Let �̄ be the upper bound on estimated
transport time between any DSA and its district’s center.

Then, the liver redistricting problem minimizes the sum
of absolute differences between the ideal number of donors
and the actual number of donors in each district:

Minimize:
∑

k∈K

∣

∣

∣

∣

∑

i∈I

piWik −
∑

i∈I

diWik

∣

∣

∣

∣

(2)

subject to:
∑

k∈K

Wik = 1 for all i ∈I (3)

Wik −Yk ≤ 0 for all i ∈I and k ∈K (4)
∑

k∈K

Yk =N (5)
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Wik�ik ≤ �̄ for all i ∈I and k ∈K (6)
∑

i∈I

hiWik ≥ 4h5Yk for all k ∈K (7)

∑

k∈K

�ijkWik ≤ 1 −Yj for all i ∈I and j ∈K (8)

Wik ∈ 80119 for all i ∈I and k ∈K (9)

Yk ∈ 80119 for all k ∈K0 (10)

Constraint (3) guarantees that every DSA is assigned to
exactly one district. Constraint (4) ensures that Yk is 1 when-
ever Wik is 1 for some i, that is, when any DSA is assigned
to a district with center at DSA k. The number of districts
to be designed is set in Constraint (5). Constraint (6) sets
an upper bound of �̄ on the transplant-volume-weighted
time to transport the kidney from the center of any dis-
trict to any DSA in that district. We had to exclude the
two DSAs located in Hawaii and in Puerto Rico from this
constraint, or else the problem would have been infeasible
for all parameter settings. Constraint (7) sets the minimum
number of transplant centers in any district at h. Finally,
Constraint (8) guarantees that every DSA i is assigned to
the district whose center is nearest.
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