Table of Contents

User Guide 2

A. Description of the Donation Service Area (DSA) Served by CTOP 6

B. US Population Density, Deaths, Death Rates, and Donations 7

C. Organ Utilization 10

D. Description of Donors Recovered by CTOP 15

E. Programs Transplanting Organs Procured by CTOP 16

F. Transplants Facilitated by CTOP 23

G. Counties Served by CTOP 33
This report contains a wide range of useful information about the operations and performance of the Organ Procurement Organization (OPO). The report is divided into seven main sections:

A. Description of the Donation Service Area (DSA) Served by CTOP
B. US Population Density, Deaths, Death Rates, and Donations
C. Organ Utilization
D. Description of Donors Recovered by CTOP
E. Programs Transplanting Organs Procured by CTOP
F. Transplants Facilitated by CTOP
G. Counties Served by CTOP

Some common abbreviations are used throughout the report:

Organ Designators:
HR: Heart
IN: Intestine
KI: Kidney
LI: Liver
LU: Lung
PA: Pancreas

Other Abbreviations:
DSA: Donation Service Area
DBD: Donation after Brain Death
DCD: Donation after Circulatory Death

Section A: Description of the Donation Service Area Served by CTOP

Section A provides a broad geographic overview of the area of the United States served by the OPO. Figure A1 shows the DSA within the context of the nation with the location of the OPO’s headquarters indicated on the map. Figure A2 zooms in on the OPO’s DSA and highlights counties served by the OPO. SRTR staff worked with each OPO during 2013 to determine the list of counties functionally served by the OPO. This list may not necessarily match the list of official CMS-designated counties for each OPO. For a full description of the counties served, see Section G. Figure A2 also shows the locations of transplant programs within the DSA. All transplant programs within the DSA are identified in Table A1. Note that only programs that performed at least one transplant of the various types from 07/01/2018 to 06/30/2019 are listed in Table A1.
User Guide

Section B: US Population Density, Deaths, Death Rates, and Donations

Section B describes the population of the US served by the OPO. Figure B1 provides a map of the population density of the US with the DSA highlighted. Summary statistics are provided for the OPO along with an indication of where the OPO ranks among the 58 OPOs. Figures B2 and B3 are similar, but provide different perspectives, with Figure B2 focusing on deaths per 1000 population and Figure B3 focusing on deaths per 1000 square miles covered by the OPO. Note that each of these maps, population data are derived from the US Census Bureau. For a more detailed description of the counties served by this OPO, see section G.

Table B1 provides counts of deaths meeting the eligible death definition (as reported by each donor hospital) along with counts of donors procured by the OPO (total donors and those meeting the eligible death definition). To contextualize these numbers, minimum, maximum, and average values for all 58 OPOs are provided. The observed donation rate per 100 eligible deaths and the expected donation rate per 100 eligible deaths are provided. The expected donation rate is determined from a statistical model and is described in the OSR Technical Methods document. The standardized donation rate ratio is the observed donation rate divided by the expected donation rate. The \(P \) Value indicates if the standardized donation rate ratio is statistically significantly different from 1.0. If the \(P \) Value is less than 0.05, we have evidence that the standardized ratio is either higher or lower than expected and that this difference is likely not due to chance alone. Additionally, the 95% confidence interval (CI) of the standardized donation rate ratio will not include 1.0 if the \(P \) Value is less than 0.05. The standardized donation rate ratio is put in context of all 58 OPOs in Figure B4. Figure B4 is arranged by the number of eligible deaths within each DSA so that you can more easily compare the OPO with OPOs of similar size. Finally, trends in donations per 100 eligible deaths over the five most recent one-year periods are shown in Figure B5.

Table B2 provides counts of eligible deaths and actual donors procured from each of the donor hospitals served by the OPO. “Additional Donors” are those donors that did not meet the eligible death definition. Observed and expected donation rates per 100 eligible death are provided for each donor hospital, but tests of whether each hospitals donation rate is significantly higher or lower than expected are not performed due to generally small sample sizes within each donor hospital.

Section C: Organ Utilization

Section C begins by providing 5-year trends in the numbers of organs transplanted by organ type and donor type (donations after brain death [DBD] and donations after circulatory death [DCD]). Figure C1, Figure C2, and Figure C3 present counts of transplants in total (Figure C1), for DBD donors (Figure C2), and for DCD donors (Figure C3). For the purpose of counting transplants, right and left kidneys are counted separately, as are right and left lungs. The “Donors” count simply counts the donors from whom at least one organ was recovered for the purpose of transplant. Table C1 then provides a full description of the numbers of donors authorized by each organ type along with the
The ultimate disposition of the organs for the most recent one-year period. In Table C1, kidneys and lungs are counted individually yielding approximately twice the number of organs authorized when compared to the other organs. Table C2 presents organ-specific donation rates per 100 eligible deaths. Expected rates are based on a statistical model detailed in the OSR Technical Methods document. If the P Value is less than 0.05, we have evidence that the difference between the observed and expected organ-specific donation rate is not simply due to chance. Figure C4 presents the standardized organ-specific donation rate ratios along with their 95% confidence intervals (CI).

Figures C5 and C6 present organs recovered per donor and organs transplanted per donor, respectively. Each of these figures presents where the OPO stands relative to all 58 OPOs with the OPO’s performance indicated by the diamond. The distribution of all 58 OPOs is shown by the bell-shaped curve with the national average of all 58 OPOs indicated by the horizontal line. Trends in organs transplanted per donor over the previous five 1-year periods are shown in Figure C7.

Table C3 presents the Observed vs. Expected organ yields for the most recent 2-year period. For a full description of the models used by the SRTR to estimate expected organ yields, please visit our website at www.srtr.org. The Observed to Expected (O/E) organ-specific ratios are then presented graphically in Figure C8 so that it can be seen where the OPO stands relative to the other OPOs. In Figure C8, the x-axis is the number of donors procured by each OPO so that one can compare the OPO with other OPOs that are relatively the same size.

Figures C9, C10, and C11 present data specific to donors after brain death (DBD) and donors after circulatory death (DCD). Figure C9 shows 5-year trends in the number of organs transplanted per donor by DBD and DCD status with comparisons to the US as a whole. Figures C10 and C11 present where the OPO stands in relation to all 58 OPOs with regards to organs transplanted per DBD/DCD donor.

Section D: Description of Donors Recovered by CTOP

Section D presents tabular descriptions of the donor recovered by the OPO. Data are shown for the most recent two years with comparisons to the US as a whole. Breakdowns are provided for race, age, gender, blood type, cause of death, and DCD status.

Section E: Programs Transplanting Organs Procured by CTOP

Section E presents “flight maps” showing locations of programs that transplanted organs from the OPO. Separate maps are provided for each organ type. Note that all arrows originate from the location of the OPO’s headquarters rather than the location of each donor hospital. In addition, many programs within the OPO’s DSA will not be visible on the map due to scale. Each map is accompanied by a table providing the full detail of each program transplanting organs recovered by the OPO. Geographic indicators are provided based on whether the program is within the same DSA (Local), within the

The data reported here were prepared by the Scientific Registry of Transplant Recipients (SRTR) under contract with the Health Resources and Services Administration (HRSA).
same OPTN region but not the same DSA (Regional), or not within the same DSA or OPTN region (National).

Section F: Transplants Facilitated by CTOP

Section F provides tabular descriptions of the recipients that received organs that were procured by the OPO, regardless of where the transplant took place. Separate tables are provided by each organ type along with separate tables for heart-lung recipients and kidney-pancreas recipients. The most recent two years are provided along with data for the US as a whole for the same two periods. Breakdowns are provided by demographic factors (race, age, and gender) and clinical factors (blood type, PRA [kidney, pancreas, and kidney-pancreas only], medical urgency status [if applicable], Expanded Criteria Donor status [kidney only], and primary cause of disease).

Section G: Counties Served by CTOP

Table G1 presents the counties served by the OPO. Counties are ordered alphabetically within state. For the purposes of this report, counties are those actually served by the OPO and do not necessarily reflect CMS assignments. SRTR staff worked closely with the OPOs during 2013 to determine the correct county assignments. Please contact the SRTR at srtr@srtr.org if you feel any counties are assigned in error. If more than one OPO serves different donor hospitals within the same county, the county is indicated as a shared county and the OPO sharing the county is indicated by OPO code. For the purpose of calculating population density, land area, and death rates presented in Section B, the one-to-one CMS county to OPO assignment is used.
A. Description of the Donation Service Area (DSA) Served by CTOP

Figure A1. Donation service area of CTOP

Figure A2. Counties served by CTOP

Table A1. Transplant programs* in CTOP's DSA

<table>
<thead>
<tr>
<th>Hospital Name (Code)</th>
<th>HR</th>
<th>IN</th>
<th>KI</th>
<th>LI</th>
<th>LU</th>
<th>PA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baystate Medical Center (MABS)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Hartford Hospital (CTHH)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Performed at least one transplant of that type from 07/01/2018 to 06/30/2019.
B. US Population Density, Deaths, Death Rates, and Donations

Figure B1. Population density*

Population of CTOP's DSA: 2,473,946. This ranks 47th among the 58 DSAs (1st is the highest).

Land area of CTOP's DSA: 5,457 square miles. This ranks 52nd among the 58 DSAs (1st is the highest).

*US Census Bureau, 2018 projected population/2010 land area

Figure B2. Deaths per 1000 population*

Deaths within CTOP's DSA: 22,876. This ranks 47th among the 58 DSAs (1st is the highest).

Death rate within CTOP's DSA: 9.25. This ranks 25th among the 58 DSAs (1st is the highest).

*US Census Bureau, 2018 projected death (includes all deaths, not limited to eligible deaths) and population

Figure B3. Deaths per 1000 square miles*

Deaths per 1000 square miles within CTOP's DSA: 4,192. This ranks 13th among the 58 DSAs (1st is the highest).

*US Census Bureau, 2018 projected death (includes all deaths, not limited to eligible deaths) and population

The data reported here were prepared by the Scientific Registry of Transplant Recipients (SRTR) under contract with the Health Resources and Services Administration (HRSA).
B. US Population Density, Deaths, Death Rates, and Donations

Table B1. Measures of donation rate*, 07/01/2018 to 06/30/2019

<table>
<thead>
<tr>
<th>Measure</th>
<th>CTOP</th>
<th>National</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Eligible Deaths</td>
<td>73</td>
<td>39</td>
<td>202.88</td>
<td>615</td>
<td></td>
</tr>
<tr>
<td>Deceased Donors (All)</td>
<td>72</td>
<td>48</td>
<td>192.76</td>
<td>637</td>
<td></td>
</tr>
<tr>
<td>Deceased Donors Meeting Eligibility Criteria</td>
<td>48</td>
<td>29</td>
<td>145.33</td>
<td>474</td>
<td></td>
</tr>
<tr>
<td>Observed Donation Rate Per 100 Eligible Deaths</td>
<td>65.8</td>
<td>56.5</td>
<td>71.6</td>
<td>85.6</td>
<td></td>
</tr>
<tr>
<td>Expected Donation Rate Per 100 Eligible Deaths</td>
<td>73.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standardized Donation Rate Ratio (95% CI)</td>
<td>0.89</td>
<td>(0.73, 1.04)</td>
<td>0.89</td>
<td>(0.73, 1.04)</td>
<td></td>
</tr>
<tr>
<td>P Value</td>
<td>0.114</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The donation rate is calculated as the number of deceased donors meeting eligibility criteria per 100 eligible deaths.

Figure B4. Standardized donation rate ratios (observed/expected), 07/01/2018 to 06/30/2019

Figure B5. Donations per 100 eligible deaths, 07/01/2014 to 06/30/2019
B. US Population Density, Deaths, Death Rates, and Donations

Table B2. Measures of donation rates by hospital, 07/01/2018 to 06/30/2019

<table>
<thead>
<tr>
<th>Hospital Name</th>
<th>City, State</th>
<th>Donors Meeting</th>
<th>Eligible</th>
<th>Death Def.</th>
<th>Eligible Deaths</th>
<th>Observed Donation Rate</th>
<th>Expected Donation Rate</th>
<th>Additional Donors</th>
</tr>
</thead>
<tbody>
<tr>
<td>John Dempsey Hospital</td>
<td>Farmington, CT</td>
<td>1</td>
<td>1</td>
<td>100</td>
<td>86.5</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Connecticut Childrens Medical Center</td>
<td>Hartford, CT</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>39.8</td>
<td>1</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Hartford Hospital</td>
<td>Hartford, CT</td>
<td>15</td>
<td>25</td>
<td>60</td>
<td>71.9</td>
<td>9</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>St Francis Hospital & Medical Center</td>
<td>Hartford, CT</td>
<td>8</td>
<td>15</td>
<td>53.3</td>
<td>69.6</td>
<td>4</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Manchester Mem Hosp</td>
<td>Manchester, CT</td>
<td>1</td>
<td>1</td>
<td>100</td>
<td>86.1</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Middlesex Mem Hosp</td>
<td>Middletown, CT</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>1</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>The Hospital Of Central Connecticut - New Britain</td>
<td>New Britain, CT</td>
<td>4</td>
<td>4</td>
<td>100</td>
<td>72.9</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Lawrence & Memorial Hospital</td>
<td>New London, CT</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>1</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>William W Backus Hosp</td>
<td>Norwich, CT</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>1</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Charlotte Hungerford Hosp</td>
<td>Torrington, CT</td>
<td>1</td>
<td>1</td>
<td>100</td>
<td>83.8</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Rockville General Hosp</td>
<td>Vernon, CT</td>
<td>0</td>
<td>0</td>
<td>--</td>
<td>--</td>
<td>1</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Baystate Medical Center</td>
<td>Springfield, MA</td>
<td>17</td>
<td>23</td>
<td>50</td>
<td>73</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Mercy Hospital</td>
<td>Springfield, MA</td>
<td>1</td>
<td>2</td>
<td>50</td>
<td>73</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>48</td>
<td>73</td>
<td></td>
<td></td>
<td>24</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
C. Organ Utilization

Figure C1. Total donors and organs transplanted

Figure C2. DBD donors and organs transplanted

Figure C3. DCD donors and organs transplanted
C. Organ Utilization

Table C1. Organ utilization, 07/01/2018 to 06/30/2019

<table>
<thead>
<tr>
<th>Organ</th>
<th>Organs Authorized</th>
<th>Not Recovered*</th>
<th>Recovered for Transplant, Not for Transplant*</th>
<th>Recovered for Transplant, Transplanted*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart</td>
<td>72</td>
<td>36</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Intestine</td>
<td>71</td>
<td>68</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Kidney</td>
<td>144</td>
<td>6</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>Liver</td>
<td>72</td>
<td>19</td>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>Lung</td>
<td>144</td>
<td>110</td>
<td>13</td>
<td>3</td>
</tr>
<tr>
<td>Pancreas</td>
<td>72</td>
<td>69</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

*Each liver or pancreas segment is counted separately. Pancreas islet cells are not included.

Table C2. Organ specific donation rates per 100 eligible deaths*, 07/01/2018 to 06/30/2019

<table>
<thead>
<tr>
<th>Organ</th>
<th>Observed</th>
<th>Expected</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart</td>
<td>32.9</td>
<td>24.8</td>
<td>0.056</td>
</tr>
<tr>
<td>Kidney</td>
<td>61.6</td>
<td>67.9</td>
<td>0.252</td>
</tr>
<tr>
<td>Liver</td>
<td>54.8</td>
<td>65.7</td>
<td>0.065</td>
</tr>
<tr>
<td>Lung</td>
<td>13.7</td>
<td>18.5</td>
<td>0.246</td>
</tr>
<tr>
<td>Pancreas</td>
<td>4.1</td>
<td>7.0</td>
<td>0.135</td>
</tr>
</tbody>
</table>

*Organ-specific rates are calculated as the number of deceased donors meeting eligibility criteria donating at least one organ of that type per 100 eligible deaths.

Figure C4. Standardized donation rate ratio, 07/01/2018 to 06/30/2019

![Standardized donation rate ratio](image)

Figure C5. Organs recovered per donor, 07/01/2018 to 06/30/2019 (unadjusted for donor characteristics)

![Organs recovered per donor](image)
C. Organ Utilization

Figure C6. Organs transplanted per donor, 07/01/2018 to 06/30/2019 (unadjusted for donor characteristics)

Figure C7. Trends in organs transplanted per donor
Table C3. Observed and expected organ yield, 07/01/2017 to 06/30/2019

<table>
<thead>
<tr>
<th>Number of Donors</th>
<th>Aggregate Organ</th>
<th>Heart</th>
<th>Intestine</th>
<th>Kidney</th>
<th>Liver</th>
<th>Lung*</th>
<th>Pancreas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed Number of Transplanted Organs</td>
<td>387</td>
<td>50</td>
<td>2</td>
<td>218</td>
<td>89</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>Expected Number of Transplanted Organs</td>
<td>389</td>
<td>40</td>
<td>1</td>
<td>221</td>
<td>92</td>
<td>26</td>
<td>8</td>
</tr>
<tr>
<td>Observed Number of Transplanted Organs per 100 Donors</td>
<td>274.5</td>
<td>35.5</td>
<td>1.4</td>
<td>154.6</td>
<td>63.1</td>
<td>17.7</td>
<td>2.1</td>
</tr>
<tr>
<td>Expected Number of Transplanted Organs per 100 Donors</td>
<td>275.6</td>
<td>28.7</td>
<td>0.8</td>
<td>156.5</td>
<td>65.4</td>
<td>18.4</td>
<td>5.9</td>
</tr>
<tr>
<td>Observed per 100 - Expected per 100</td>
<td>-1.2</td>
<td>6.8</td>
<td>0.6</td>
<td>-1.9</td>
<td>-2.2</td>
<td>-0.6</td>
<td>-3.8</td>
</tr>
<tr>
<td>Observed to Expected (O/E) Ratio</td>
<td>1</td>
<td>1.24</td>
<td>1.71</td>
<td>0.99</td>
<td>0.97</td>
<td>0.97</td>
<td>0.36</td>
</tr>
<tr>
<td>P Value</td>
<td>0.88</td>
<td>0.02</td>
<td>0.71</td>
<td>0.67</td>
<td>0.39</td>
<td>0.83</td>
<td><0.01</td>
</tr>
</tbody>
</table>

*Lung yield is calculated as the number of donors that had at least one lung transplanted.

Figure C8. Observed/expected yield by organ, 07/01/2017 to 06/30/2019 (adjusted)
C. Organ Utilization

Figure C9. Trends in total organs transplanted per DBD/DCD donor

![Graph showing trends in total organs transplanted per DBD/DCD donor]

Figure C10. Total organs transplanted per DBD donor, 07/01/2018 to 06/30/2019 (unadjusted for donor characteristics)

![Graph showing total organs transplanted per DBD donor]

Figure C11. Total organs transplanted per DCD donor, 07/01/2018 to 06/30/2019 (unadjusted for donor characteristics)

![Graph showing total organs transplanted per DCD donor]
D. Description of Donors Recovered by CTOP

Table D1. Characteristics of all deceased donors recovered, 07/01/2017 to 06/30/2019

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Donors</td>
<td>69</td>
<td>72</td>
<td>10,470</td>
<td>11,180</td>
</tr>
<tr>
<td>Race (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>63.8</td>
<td>65.3</td>
<td>65.5</td>
<td>65.5</td>
</tr>
<tr>
<td>African-American</td>
<td>11.6</td>
<td>5.6</td>
<td>16.6</td>
<td>15.9</td>
</tr>
<tr>
<td>Hispanic/Latino</td>
<td>21.7</td>
<td>29.2</td>
<td>14.0</td>
<td>14.6</td>
</tr>
<tr>
<td>Asian</td>
<td>2.9</td>
<td>0.0</td>
<td>2.8</td>
<td>2.7</td>
</tr>
<tr>
<td>Other</td>
<td>0.0</td>
<td>0.0</td>
<td>1.1</td>
<td>1.3</td>
</tr>
<tr>
<td>Age (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1 Years</td>
<td>1.4</td>
<td>0.0</td>
<td>1.7</td>
<td>1.8</td>
</tr>
<tr>
<td>2-11 Years</td>
<td>0.0</td>
<td>1.4</td>
<td>2.8</td>
<td>2.6</td>
</tr>
<tr>
<td>12-17 Years</td>
<td>1.4</td>
<td>0.0</td>
<td>4.1</td>
<td>3.6</td>
</tr>
<tr>
<td>18-34 Years</td>
<td>31.9</td>
<td>23.6</td>
<td>30.2</td>
<td>28.1</td>
</tr>
<tr>
<td>35-49 Years</td>
<td>29.0</td>
<td>34.7</td>
<td>27.0</td>
<td>28.3</td>
</tr>
<tr>
<td>50-64 Years</td>
<td>30.4</td>
<td>38.9</td>
<td>27.3</td>
<td>28.3</td>
</tr>
<tr>
<td>65+ Years</td>
<td>5.8</td>
<td>1.4</td>
<td>6.9</td>
<td>7.3</td>
</tr>
<tr>
<td>Gender (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>56.5</td>
<td>54.2</td>
<td>60.9</td>
<td>60.2</td>
</tr>
<tr>
<td>Female</td>
<td>43.5</td>
<td>45.8</td>
<td>39.1</td>
<td>39.8</td>
</tr>
<tr>
<td>Blood Type (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>39.1</td>
<td>54.2</td>
<td>48.1</td>
<td>47.8</td>
</tr>
<tr>
<td>A</td>
<td>42.0</td>
<td>34.7</td>
<td>37.0</td>
<td>36.3</td>
</tr>
<tr>
<td>B</td>
<td>15.9</td>
<td>8.3</td>
<td>11.7</td>
<td>12.4</td>
</tr>
<tr>
<td>AB</td>
<td>2.9</td>
<td>2.8</td>
<td>3.2</td>
<td>3.4</td>
</tr>
<tr>
<td>Cause of Death (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anoxia</td>
<td>53.6</td>
<td>52.8</td>
<td>42.1</td>
<td>44.4</td>
</tr>
<tr>
<td>Stroke</td>
<td>24.6</td>
<td>33.3</td>
<td>26.5</td>
<td>26.5</td>
</tr>
<tr>
<td>CNS Tumor</td>
<td>0.0</td>
<td>0.0</td>
<td>0.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Head Trauma</td>
<td>18.8</td>
<td>11.1</td>
<td>28.6</td>
<td>25.8</td>
</tr>
<tr>
<td>Other</td>
<td>2.9</td>
<td>2.8</td>
<td>2.4</td>
<td>3.0</td>
</tr>
<tr>
<td>Unknown</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Donors After Cardiac Death (%)</td>
<td>23.2</td>
<td>31.9</td>
<td>19.0</td>
<td>21.0</td>
</tr>
</tbody>
</table>
E. Programs Transplanting Organs Procured by CTOP

Figure E1. Programs transplanting hearts procured by CTOP, 07/01/2018 to 06/30/2019*

Table E1. Programs transplanting hearts procured by CTOP, 07/01/2018 to 06/30/2019

<table>
<thead>
<tr>
<th>Hospital Name (Code)</th>
<th>Geography*</th>
<th>Transplants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hartford Hospital (CTHH)</td>
<td>Local</td>
<td>3</td>
</tr>
<tr>
<td>Brigham and Women's Hospital (MAPB)</td>
<td>Regional</td>
<td>1</td>
</tr>
<tr>
<td>Massachusetts General Hospital (MAMG)</td>
<td>Regional</td>
<td>1</td>
</tr>
<tr>
<td>Tufts Medical Center (MANM)</td>
<td>Regional</td>
<td>4</td>
</tr>
<tr>
<td>Yale New Haven Hospital (CTYN)</td>
<td>Regional</td>
<td>2</td>
</tr>
<tr>
<td>Allegheny General Hospital (PAAG)</td>
<td>National</td>
<td>1</td>
</tr>
<tr>
<td>Henry Ford Hospital (MIHF)</td>
<td>National</td>
<td>1</td>
</tr>
<tr>
<td>New York University Medical Center (NYUC)</td>
<td>National</td>
<td>3</td>
</tr>
<tr>
<td>NY Presbyterian Hospital/Columbia Univ. Medical Center (NYCP)</td>
<td>National</td>
<td>2</td>
</tr>
<tr>
<td>Sentara Norfolk General Hospital (VANG)</td>
<td>National</td>
<td>1</td>
</tr>
<tr>
<td>Strong Memorial Hospital, University of Rochester Medical Center (NYFL)</td>
<td>National</td>
<td>1</td>
</tr>
<tr>
<td>University Hospitals of Cleveland (OHUH)</td>
<td>National</td>
<td>1</td>
</tr>
<tr>
<td>University of Virginia Health Sciences Center (VAUV)</td>
<td>National</td>
<td>1</td>
</tr>
<tr>
<td>Westchester Medical Center (NYWC)</td>
<td>National</td>
<td>2</td>
</tr>
</tbody>
</table>

* Local = within same DSA; Regional = within same OPTN region, but not same DSA; National = not within same DSA or OPTN region

The data reported here were prepared by the Scientific Registry of Transplant Recipients (SRTR) under contract with the Health Resources and Services Administration (HRSA).
E. Programs Transplanting Organs Procured by CTOP

Figure E2. Programs transplanting intestines procured by CTOP, 07/01/2018 to 06/30/2019*

No data available for this table, 07/01/2018 to 06/30/2019
Figure E3. Programs transplanting kidneys procured by CTOP, 07/01/2018 to 06/30/2019

Table E3. Programs transplanting kidneys procured by CTOP, 07/01/2018 to 06/30/2019

<table>
<thead>
<tr>
<th>Hospital Name (Code)</th>
<th>Geography*</th>
<th>Transplants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baystate Medical Center (MABS)</td>
<td>Local</td>
<td>27</td>
</tr>
<tr>
<td>Hartford Hospital (CTHH)</td>
<td>Local</td>
<td>53</td>
</tr>
<tr>
<td>Beth Israel Deaconess Medical Center (MABI)</td>
<td>Regional</td>
<td>3</td>
</tr>
<tr>
<td>Brigham and Women's Hospital (MAPB)</td>
<td>Regional</td>
<td>2</td>
</tr>
<tr>
<td>Maine Medical Center (MEMC)</td>
<td>Regional</td>
<td>2</td>
</tr>
<tr>
<td>Massachusetts General Hospital (MAMG)</td>
<td>Regional</td>
<td>4</td>
</tr>
<tr>
<td>Tufts Medical Center (MANM)</td>
<td>Regional</td>
<td>2</td>
</tr>
<tr>
<td>Yale New Haven Hospital (CTYN)</td>
<td>Regional</td>
<td>1</td>
</tr>
<tr>
<td>Barnes-Jewish Hospital (MOBH)</td>
<td>National</td>
<td>1</td>
</tr>
<tr>
<td>Johns Hopkins Hospital (MDJH)</td>
<td>National</td>
<td>1</td>
</tr>
<tr>
<td>Medical College of Virginia Hospitals (VAMC)</td>
<td>National</td>
<td>1</td>
</tr>
<tr>
<td>Montefiore Medical Center (NYMA)</td>
<td>National</td>
<td>1</td>
</tr>
<tr>
<td>Mount Sinai Medical Center (NYMS)</td>
<td>National</td>
<td>2</td>
</tr>
<tr>
<td>New York University Medical Center (NYUC)</td>
<td>National</td>
<td>1</td>
</tr>
<tr>
<td>NY Presbyterian Hospital/Columbia Univ. Medical Center (NYCP)</td>
<td>National</td>
<td>1</td>
</tr>
<tr>
<td>Ochsner Foundation Hospital (LAOF)</td>
<td>National</td>
<td>1</td>
</tr>
<tr>
<td>Ohio State University Medical Center (OHOU)</td>
<td>National</td>
<td>1</td>
</tr>
<tr>
<td>Piedmont Hospital (GAPH)</td>
<td>National</td>
<td>1</td>
</tr>
</tbody>
</table>

* Local = within same DSA; Regional = within same OPTN region, but not same DSA; National = not within same DSA or OPTN region

The data reported here were prepared by the Scientific Registry of Transplant Recipients (SRTR) under contract with the Health Resources and Services Administration (HRSA).
E. Programs Transplanting Organs Procured by CTOP

Table E3. Programs transplanting kidneys procured by CTOP, 07/01/2018 to 06/30/2019 (continued)

<table>
<thead>
<tr>
<th>Hospital Name (Code)</th>
<th>Geography</th>
<th>Transplants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rochester Methodist Hospital (Mayo Clinic) (MNMC)</td>
<td>National</td>
<td>2</td>
</tr>
<tr>
<td>St Luke's Hospital of Kansas City (MOLH)</td>
<td>National</td>
<td>1</td>
</tr>
<tr>
<td>State University of New York Upstate Medical University (NYUM)</td>
<td>National</td>
<td>1</td>
</tr>
<tr>
<td>UAMS Medical Center (ARUA)</td>
<td>National</td>
<td>2</td>
</tr>
<tr>
<td>University of Colorado Hospital/Health Science Center (COUC)</td>
<td>National</td>
<td>2</td>
</tr>
<tr>
<td>UT Southwestern Medical Center/William P. Clements Jr. University Hospital (TXSP)</td>
<td>National</td>
<td>1</td>
</tr>
<tr>
<td>Wake Forest Baptist Medical Center (NCBG)</td>
<td>National</td>
<td>1</td>
</tr>
<tr>
<td>Westchester Medical Center (NYWC)</td>
<td>National</td>
<td>1</td>
</tr>
</tbody>
</table>

* Local = within same DSA; Regional = within same OPTN region, but not same DSA; National = not within same DSA or OPTN region
E. Programs Transplanting Organs Procured by CTOP

Figure E4. Programs transplanting livers procured by CTOP, 07/01/2018 to 06/30/2019*

Table E4. Programs transplanting livers procured by CTOP, 07/01/2018 to 06/30/2019

<table>
<thead>
<tr>
<th>Hospital Name (Code)</th>
<th>Geography*</th>
<th>Transplants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hartford Hospital (CTHH)</td>
<td>Local</td>
<td>13</td>
</tr>
<tr>
<td>Beth Israel Deaconess Medical Center (MABI)</td>
<td>Regional</td>
<td>6</td>
</tr>
<tr>
<td>Lahey Clinic Medical Center (MALC)</td>
<td>Regional</td>
<td>5</td>
</tr>
<tr>
<td>Massachusetts General Hospital (MAMG)</td>
<td>Regional</td>
<td>11</td>
</tr>
<tr>
<td>UMass Memorial Medical Center (MAUM)</td>
<td>Regional</td>
<td>3</td>
</tr>
<tr>
<td>Yale New Haven Hospital (CTYN)</td>
<td>Regional</td>
<td>3</td>
</tr>
<tr>
<td>University of Cincinnati Medical Center (OHUC)</td>
<td>National</td>
<td>1</td>
</tr>
</tbody>
</table>

* Local = within same DSA; Regional = within same OPTN region, but not same DSA; National = not within same DSA or OPTN region
E. Programs Transplanting Organs Procured by CTOP

Figure E5. Programs transplanting lungs procured by CTOP, 07/01/2018 to 06/30/2019*

* Transplants within the local area of the OPO are not always visible on the map due to scale. See Table E5 for full details.

Table E5. Programs transplanting lungs procured by CTOP, 07/01/2018 to 06/30/2019

<table>
<thead>
<tr>
<th>Hospital Name (Code)</th>
<th>Geography*</th>
<th>Transplants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Massachusetts General Hospital (MAMG)</td>
<td>Regional</td>
<td>4</td>
</tr>
<tr>
<td>Hospital of the University of Pennsylvania (PAUP)</td>
<td>National</td>
<td>2</td>
</tr>
<tr>
<td>New York University Medical Center (NYUC)</td>
<td>National</td>
<td>1</td>
</tr>
<tr>
<td>NY Presbyterian Hospital/Columbia Univ. Medical Center (NYCP)</td>
<td>National</td>
<td>3</td>
</tr>
<tr>
<td>Temple University Hospital (PATU)</td>
<td>National</td>
<td>8</td>
</tr>
</tbody>
</table>

* Local = within same DSA; Regional = within same OPTN region, but not same DSA; National = not within same DSA or OPTN region
E. Programs Transplanting Organs Procured by CTOP

Figure E6. Programs transplanting pancreata procured by CTOP, 07/01/2018 to 06/30/2019*

Table E6. Programs transplanting pancreata procured by CTOP, 07/01/2018 to 06/30/2019

<table>
<thead>
<tr>
<th>Hospital Name (Code)</th>
<th>Geography*</th>
<th>Transplants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beth Israel Deaconess Medical Center (MABI)</td>
<td>Regional</td>
<td>1</td>
</tr>
<tr>
<td>University of Maryland Medical System (MDUM)</td>
<td>National</td>
<td>1</td>
</tr>
</tbody>
</table>

* Local = within same DSA; Regional = within same OPTN region, but not same DSA; National = not within same DSA or OPTN region.
F. Transplants Facilitated by CTOP

Table F1. Characteristics of deceased donor heart-lung recipients

No data available for this table, 07/01/2017 to 06/30/2019
F. Transplants Facilitated by CTOP

Table F2. Characteristics of deceased donor heart recipients

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number of Transplants</td>
<td>26</td>
<td>24</td>
<td>3,306</td>
<td>3,520</td>
</tr>
<tr>
<td>Race (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>53.8</td>
<td>83.3</td>
<td>62.2</td>
<td>62.4</td>
</tr>
<tr>
<td>African-American</td>
<td>34.6</td>
<td>8.3</td>
<td>22.0</td>
<td>21.7</td>
</tr>
<tr>
<td>Hispanic/Latino</td>
<td>7.7</td>
<td>4.2</td>
<td>10.3</td>
<td>10.7</td>
</tr>
<tr>
<td>Asian</td>
<td>3.8</td>
<td>4.2</td>
<td>4.4</td>
<td>4.2</td>
</tr>
<tr>
<td>Other</td>
<td>0.0</td>
<td>0.0</td>
<td>1.1</td>
<td>0.9</td>
</tr>
<tr>
<td>Age (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1 Years</td>
<td>0.0</td>
<td>0.0</td>
<td>4.5</td>
<td>5.1</td>
</tr>
<tr>
<td>2-11 Years</td>
<td>0.0</td>
<td>8.3</td>
<td>4.6</td>
<td>4.6</td>
</tr>
<tr>
<td>12-17 Years</td>
<td>0.0</td>
<td>0.0</td>
<td>4.7</td>
<td>4.6</td>
</tr>
<tr>
<td>18-34 Years</td>
<td>3.8</td>
<td>0.0</td>
<td>8.1</td>
<td>9.8</td>
</tr>
<tr>
<td>35-49 Years</td>
<td>11.5</td>
<td>8.3</td>
<td>17.9</td>
<td>17.7</td>
</tr>
<tr>
<td>50-64 Years</td>
<td>69.2</td>
<td>54.2</td>
<td>41.0</td>
<td>40.7</td>
</tr>
<tr>
<td>65+ Years</td>
<td>15.4</td>
<td>29.2</td>
<td>19.2</td>
<td>17.5</td>
</tr>
<tr>
<td>Gender (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>76.9</td>
<td>70.8</td>
<td>70.8</td>
<td>69.4</td>
</tr>
<tr>
<td>Female</td>
<td>23.1</td>
<td>29.2</td>
<td>29.2</td>
<td>30.6</td>
</tr>
<tr>
<td>Blood Type (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>30.8</td>
<td>62.5</td>
<td>40.5</td>
<td>40.4</td>
</tr>
<tr>
<td>A</td>
<td>38.5</td>
<td>29.2</td>
<td>39.3</td>
<td>38.4</td>
</tr>
<tr>
<td>B</td>
<td>30.8</td>
<td>8.3</td>
<td>15.5</td>
<td>15.7</td>
</tr>
<tr>
<td>AB</td>
<td>0.0</td>
<td>0.0</td>
<td>4.8</td>
<td>5.5</td>
</tr>
<tr>
<td>Medical Urgency Status (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1A</td>
<td>69.2</td>
<td>33.3</td>
<td>67.5</td>
<td>30.6</td>
</tr>
<tr>
<td>1B</td>
<td>30.8</td>
<td>0.0</td>
<td>29.5</td>
<td>8.9</td>
</tr>
<tr>
<td>2</td>
<td>0.0</td>
<td>4.2</td>
<td>3.0</td>
<td>1.4</td>
</tr>
<tr>
<td>Other</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Primary Cause of Disease (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiomyopathy</td>
<td>57.7</td>
<td>66.7</td>
<td>60.3</td>
<td>61.5</td>
</tr>
<tr>
<td>Coronary Artery Disease</td>
<td>34.6</td>
<td>20.8</td>
<td>28.2</td>
<td>24.5</td>
</tr>
<tr>
<td>Valvular Heart Disease</td>
<td>7.7</td>
<td>4.2</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Congenital Heart Disease</td>
<td>0.0</td>
<td>8.3</td>
<td>9.7</td>
<td>11.5</td>
</tr>
<tr>
<td>Retransplant/Graft Failure</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Other</td>
<td>0.0</td>
<td>0.0</td>
<td>0.8</td>
<td>1.5</td>
</tr>
<tr>
<td>Missing</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>
F. Transplants Facilitated by CTOP

Table F3. Characteristics of deceased donor intestine recipients

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number of Transplants</td>
<td>2</td>
<td>0</td>
<td>108</td>
<td>90</td>
</tr>
<tr>
<td>Race (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>100.0</td>
<td>--</td>
<td>65.7</td>
<td>67.8</td>
</tr>
<tr>
<td>African-American</td>
<td>0.0</td>
<td>--</td>
<td>20.4</td>
<td>15.6</td>
</tr>
<tr>
<td>Hispanic/Latino</td>
<td>0.0</td>
<td>--</td>
<td>12.0</td>
<td>13.3</td>
</tr>
<tr>
<td>Asian</td>
<td>0.0</td>
<td>--</td>
<td>0.0</td>
<td>1.1</td>
</tr>
<tr>
<td>Other</td>
<td>0.0</td>
<td>--</td>
<td>1.9</td>
<td>2.2</td>
</tr>
<tr>
<td>Age (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1 Years</td>
<td>0.0</td>
<td>--</td>
<td>4.6</td>
<td>11.1</td>
</tr>
<tr>
<td>2-11 Years</td>
<td>0.0</td>
<td>--</td>
<td>28.7</td>
<td>24.4</td>
</tr>
<tr>
<td>12-17 Years</td>
<td>0.0</td>
<td>--</td>
<td>7.4</td>
<td>3.3</td>
</tr>
<tr>
<td>18-34 Years</td>
<td>100.0</td>
<td>--</td>
<td>19.4</td>
<td>27.8</td>
</tr>
<tr>
<td>35-49 Years</td>
<td>0.0</td>
<td>--</td>
<td>25.0</td>
<td>14.4</td>
</tr>
<tr>
<td>50-64 Years</td>
<td>0.0</td>
<td>--</td>
<td>12.0</td>
<td>17.8</td>
</tr>
<tr>
<td>65+ Years</td>
<td>0.0</td>
<td>--</td>
<td>2.8</td>
<td>1.1</td>
</tr>
<tr>
<td>Gender (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>100.0</td>
<td>--</td>
<td>57.4</td>
<td>52.2</td>
</tr>
<tr>
<td>Female</td>
<td>0.0</td>
<td>--</td>
<td>42.6</td>
<td>47.8</td>
</tr>
<tr>
<td>Blood Type (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>50.0</td>
<td>--</td>
<td>42.6</td>
<td>44.4</td>
</tr>
<tr>
<td>A</td>
<td>50.0</td>
<td>--</td>
<td>46.3</td>
<td>38.9</td>
</tr>
<tr>
<td>B</td>
<td>0.0</td>
<td>--</td>
<td>7.4</td>
<td>12.2</td>
</tr>
<tr>
<td>AB</td>
<td>0.0</td>
<td>--</td>
<td>3.7</td>
<td>4.4</td>
</tr>
<tr>
<td>Primary Cause of Disease (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short Gut Syndrom</td>
<td>50.0</td>
<td>--</td>
<td>61.1</td>
<td>60.0</td>
</tr>
<tr>
<td>Functional Bowel Problem</td>
<td>0.0</td>
<td>--</td>
<td>13.9</td>
<td>16.7</td>
</tr>
<tr>
<td>Other</td>
<td>50.0</td>
<td>--</td>
<td>25.0</td>
<td>23.3</td>
</tr>
<tr>
<td>Missing</td>
<td>0.0</td>
<td>--</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
F. Transplants Facilitated by CTOP

Table F4. Characteristics of deceased donor kidney recipients (demographic)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number of Transplants</td>
<td>101</td>
<td>14,299</td>
<td>116</td>
<td>15,530</td>
</tr>
<tr>
<td>Race (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>39.6</td>
<td>38.4</td>
<td>36.2</td>
<td>37.2</td>
</tr>
<tr>
<td>African-American</td>
<td>28.7</td>
<td>31.9</td>
<td>31.9</td>
<td>33.2</td>
</tr>
<tr>
<td>Hispanic/Latino</td>
<td>24.8</td>
<td>19.9</td>
<td>25.0</td>
<td>19.5</td>
</tr>
<tr>
<td>Asian</td>
<td>5.0</td>
<td>7.8</td>
<td>5.2</td>
<td>8.1</td>
</tr>
<tr>
<td>Other</td>
<td>2.0</td>
<td>1.9</td>
<td>1.7</td>
<td>1.9</td>
</tr>
<tr>
<td>Unknown</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Age (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1 Years</td>
<td>0.0</td>
<td>0.1</td>
<td>0.0</td>
<td>0.1</td>
</tr>
<tr>
<td>2-11 Years</td>
<td>0.0</td>
<td>1.6</td>
<td>0.0</td>
<td>1.2</td>
</tr>
<tr>
<td>12-17 Years</td>
<td>0.0</td>
<td>1.9</td>
<td>0.0</td>
<td>1.8</td>
</tr>
<tr>
<td>18-34 Years</td>
<td>9.9</td>
<td>10.1</td>
<td>6.9</td>
<td>9.7</td>
</tr>
<tr>
<td>35-49 Years</td>
<td>22.8</td>
<td>24.5</td>
<td>27.6</td>
<td>23.8</td>
</tr>
<tr>
<td>50-64 Years</td>
<td>45.5</td>
<td>40.5</td>
<td>45.7</td>
<td>40.7</td>
</tr>
<tr>
<td>65+ Years</td>
<td>21.8</td>
<td>21.4</td>
<td>19.8</td>
<td>22.8</td>
</tr>
<tr>
<td>Gender (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>62.4</td>
<td>59.5</td>
<td>62.9</td>
<td>60.0</td>
</tr>
<tr>
<td>Female</td>
<td>37.6</td>
<td>40.5</td>
<td>37.1</td>
<td>40.0</td>
</tr>
</tbody>
</table>
F. Transplants Facilitated by CTOP

Table F5. Characteristics of deceased donor kidney recipients (clinical)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number of Transplants</td>
<td>101</td>
<td>116</td>
<td>14,299</td>
<td>15,530</td>
</tr>
<tr>
<td>Blood Type (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>39.6</td>
<td>54.3</td>
<td>45.8</td>
<td>46.4</td>
</tr>
<tr>
<td>A</td>
<td>33.7</td>
<td>33.6</td>
<td>35.1</td>
<td>33.7</td>
</tr>
<tr>
<td>B</td>
<td>17.8</td>
<td>9.5</td>
<td>14.0</td>
<td>14.5</td>
</tr>
<tr>
<td>AB</td>
<td>8.9</td>
<td>2.6</td>
<td>5.1</td>
<td>5.4</td>
</tr>
<tr>
<td>Calculated Panel Reactive Antibody (CPRA%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-9</td>
<td>65.3</td>
<td>67.2</td>
<td>58.2</td>
<td>59.3</td>
</tr>
<tr>
<td>10-79</td>
<td>23.8</td>
<td>20.7</td>
<td>22.8</td>
<td>22.8</td>
</tr>
<tr>
<td>80+</td>
<td>10.9</td>
<td>12.1</td>
<td>18.9</td>
<td>17.9</td>
</tr>
<tr>
<td>Primary Cause of Disease (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glomerular Diseases</td>
<td>27.7</td>
<td>26.7</td>
<td>22.1</td>
<td>21.6</td>
</tr>
<tr>
<td>Tubular and Interstitial Disease</td>
<td>4.0</td>
<td>7.8</td>
<td>4.6</td>
<td>4.2</td>
</tr>
<tr>
<td>Polycystic Kidneys</td>
<td>12.9</td>
<td>8.6</td>
<td>7.8</td>
<td>7.5</td>
</tr>
<tr>
<td>Congenital, Familial, Metabolic</td>
<td>1.0</td>
<td>0.9</td>
<td>2.7</td>
<td>2.6</td>
</tr>
<tr>
<td>Diabetes</td>
<td>26.7</td>
<td>27.6</td>
<td>27.5</td>
<td>29.0</td>
</tr>
<tr>
<td>Renovascular & Vascular Diseases</td>
<td>0.0</td>
<td>0.0</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Neoplasms</td>
<td>0.0</td>
<td>0.0</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Hypertensive Nephrosclerosis</td>
<td>18.8</td>
<td>19.8</td>
<td>23.4</td>
<td>23.4</td>
</tr>
<tr>
<td>Other Kidney</td>
<td>8.9</td>
<td>8.6</td>
<td>10.8</td>
<td>10.8</td>
</tr>
<tr>
<td>Missing</td>
<td>0.0</td>
<td>0.0</td>
<td>0.3</td>
<td>0.2</td>
</tr>
</tbody>
</table>
F. Transplants Facilitated by CTOP

Table F6. Characteristics of deceased kidney-pancreas recipients

No data available for this table, 07/01/2017 to 06/30/2019
F. Transplants Facilitated by CTOP

Table F7. Characteristics of deceased donor liver recipients (demographic)

<table>
<thead>
<tr>
<th>Race (%)</th>
<th>This OPO</th>
<th>United States</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>76.6</td>
<td>83.3</td>
</tr>
<tr>
<td>African-American</td>
<td>6.4</td>
<td>0.0</td>
</tr>
<tr>
<td>Hispanic/Latino</td>
<td>12.8</td>
<td>16.7</td>
</tr>
<tr>
<td>Asian</td>
<td>2.1</td>
<td>0.0</td>
</tr>
<tr>
<td>Other</td>
<td>2.1</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Age (%)</th>
<th>This OPO</th>
<th>United States</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1 Years</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2-11 Years</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>12-17 Years</td>
<td>0.0</td>
<td>2.4</td>
</tr>
<tr>
<td>18-34 Years</td>
<td>8.5</td>
<td>11.9</td>
</tr>
<tr>
<td>35-49 Years</td>
<td>17.0</td>
<td>19.0</td>
</tr>
<tr>
<td>50-64 Years</td>
<td>53.2</td>
<td>38.1</td>
</tr>
<tr>
<td>65+ Years</td>
<td>21.3</td>
<td>28.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gender (%)</th>
<th>This OPO</th>
<th>United States</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>80.9</td>
<td>64.3</td>
</tr>
<tr>
<td>Female</td>
<td>19.1</td>
<td>35.7</td>
</tr>
</tbody>
</table>
F. Transplants Facilitated by CTOP

Table F8. Characteristics of deceased donor liver recipients (clinical)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number of Transplants</td>
<td>47</td>
<td>42</td>
<td>7,783</td>
<td>8,093</td>
</tr>
<tr>
<td>Blood Type (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>36.2</td>
<td>45.2</td>
<td>45.2</td>
<td>44.8</td>
</tr>
<tr>
<td>A</td>
<td>44.7</td>
<td>35.7</td>
<td>36.5</td>
<td>35.8</td>
</tr>
<tr>
<td>B</td>
<td>17.0</td>
<td>11.9</td>
<td>13.6</td>
<td>14.3</td>
</tr>
<tr>
<td>AB</td>
<td>2.1</td>
<td>7.1</td>
<td>4.7</td>
<td>5.0</td>
</tr>
<tr>
<td>Medical Urgency Status (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Status 1A</td>
<td>2.1</td>
<td>7.1</td>
<td>3.5</td>
<td>3.4</td>
</tr>
<tr>
<td>Status 1B</td>
<td>0.0</td>
<td>2.4</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>MELD 6-10</td>
<td>14.9</td>
<td>9.5</td>
<td>14.4</td>
<td>14.4</td>
</tr>
<tr>
<td>MELD 11-14</td>
<td>14.9</td>
<td>14.3</td>
<td>13.2</td>
<td>13.1</td>
</tr>
<tr>
<td>MELD 15-20</td>
<td>29.8</td>
<td>14.3</td>
<td>20.4</td>
<td>20.2</td>
</tr>
<tr>
<td>MELD 21-30</td>
<td>21.3</td>
<td>14.3</td>
<td>22.4</td>
<td>23.0</td>
</tr>
<tr>
<td>MELD 31-40</td>
<td>17.0</td>
<td>38.1</td>
<td>20.7</td>
<td>21.4</td>
</tr>
<tr>
<td>PELD <= 10</td>
<td>0.0</td>
<td>0.0</td>
<td>2.1</td>
<td>1.4</td>
</tr>
<tr>
<td>PELD 11-14</td>
<td>0.0</td>
<td>0.0</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>PELD 15-20</td>
<td>0.0</td>
<td>0.0</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>PELD 21-30</td>
<td>0.0</td>
<td>0.0</td>
<td>0.7</td>
<td>0.3</td>
</tr>
<tr>
<td>PELD >= 31</td>
<td>0.0</td>
<td>0.0</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Primary Cause of Disease (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute Hepatic Necrosis</td>
<td>2.1</td>
<td>11.9</td>
<td>4.7</td>
<td>4.7</td>
</tr>
<tr>
<td>Non-Cholestatic Cirrhosis</td>
<td>55.3</td>
<td>61.9</td>
<td>60.3</td>
<td>62.3</td>
</tr>
<tr>
<td>Cholestatic Liver Disease/Cirrhosis</td>
<td>8.5</td>
<td>4.8</td>
<td>7.0</td>
<td>7.1</td>
</tr>
<tr>
<td>Biliary Atresia</td>
<td>0.0</td>
<td>0.0</td>
<td>3.0</td>
<td>2.4</td>
</tr>
<tr>
<td>Metabolic Diseases</td>
<td>4.3</td>
<td>4.8</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td>Malignant Neoplasms</td>
<td>21.3</td>
<td>14.3</td>
<td>18.2</td>
<td>16.5</td>
</tr>
<tr>
<td>Other</td>
<td>8.5</td>
<td>2.4</td>
<td>3.6</td>
<td>3.7</td>
</tr>
<tr>
<td>Missing</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.1</td>
</tr>
</tbody>
</table>
F. Transplants Facilitated by CTOP

Table F9. Characteristics of deceased donor lung recipients

<table>
<thead>
<tr>
<th></th>
<th>This OPO</th>
<th>United States</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jul 2017-</td>
<td>Jul 2018-</td>
</tr>
<tr>
<td>Total Number of Transplants</td>
<td>16</td>
<td>12</td>
</tr>
<tr>
<td>Race (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>87.5</td>
<td>75.0</td>
</tr>
<tr>
<td>African-American</td>
<td>12.5</td>
<td>8.3</td>
</tr>
<tr>
<td>Hispanic/Latino</td>
<td>0.0</td>
<td>16.7</td>
</tr>
<tr>
<td>Asian</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Other</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Age (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1 Years</td>
<td>6.2</td>
<td>0.0</td>
</tr>
<tr>
<td>2-11 Years</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>12-17 Years</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>18-34 Years</td>
<td>6.2</td>
<td>8.3</td>
</tr>
<tr>
<td>35-49 Years</td>
<td>12.5</td>
<td>8.3</td>
</tr>
<tr>
<td>50-64 Years</td>
<td>50.0</td>
<td>50.0</td>
</tr>
<tr>
<td>65+ Years</td>
<td>25.0</td>
<td>33.3</td>
</tr>
<tr>
<td>Gender (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>56.2</td>
<td>66.7</td>
</tr>
<tr>
<td>Female</td>
<td>43.8</td>
<td>33.3</td>
</tr>
<tr>
<td>Blood Type (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>31.2</td>
<td>58.3</td>
</tr>
<tr>
<td>A</td>
<td>43.8</td>
<td>33.3</td>
</tr>
<tr>
<td>B</td>
<td>25.0</td>
<td>8.3</td>
</tr>
<tr>
<td>AB</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Primary Cause of Disease (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Congenital Disease</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Primary Pulmonary Hypertension</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Cystic Fibrosis</td>
<td>6.2</td>
<td>16.7</td>
</tr>
<tr>
<td>Idiopathic Pulmonary Fibrosis</td>
<td>75.0</td>
<td>58.3</td>
</tr>
<tr>
<td>Emphysema/COPD</td>
<td>12.5</td>
<td>25.0</td>
</tr>
<tr>
<td>Retransplant/Graft Failure</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Other</td>
<td>6.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Missing</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

The data reported here were prepared by the Scientific Registry of Transplant Recipients (SRTR) under contract with the Health Resources and Services Administration (HRSA).
F. Transplants Facilitated by CTOP

Table F10. Characteristics of deceased donor pancreas recipients

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number of Transplants</td>
<td>1</td>
<td>2</td>
<td>202</td>
<td>169</td>
</tr>
<tr>
<td>Race (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>100.0</td>
<td>100.0</td>
<td>77.2</td>
<td>71.0</td>
</tr>
<tr>
<td>African-American</td>
<td>0.0</td>
<td>0.0</td>
<td>11.9</td>
<td>14.8</td>
</tr>
<tr>
<td>Hispanic/Latino</td>
<td>0.0</td>
<td>0.0</td>
<td>6.9</td>
<td>11.2</td>
</tr>
<tr>
<td>Asian</td>
<td>0.0</td>
<td>0.0</td>
<td>1.5</td>
<td>1.8</td>
</tr>
<tr>
<td>Other</td>
<td>0.0</td>
<td>0.0</td>
<td>2.5</td>
<td>1.2</td>
</tr>
<tr>
<td>Age (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-1 Years</td>
<td>0.0</td>
<td>0.0</td>
<td>2.0</td>
<td>5.3</td>
</tr>
<tr>
<td>2-11 Years</td>
<td>0.0</td>
<td>0.0</td>
<td>10.9</td>
<td>9.5</td>
</tr>
<tr>
<td>12-17 Years</td>
<td>0.0</td>
<td>0.0</td>
<td>3.5</td>
<td>1.2</td>
</tr>
<tr>
<td>18-34 Years</td>
<td>100.0</td>
<td>0.0</td>
<td>16.3</td>
<td>23.1</td>
</tr>
<tr>
<td>35-49 Years</td>
<td>0.0</td>
<td>0.0</td>
<td>44.1</td>
<td>34.3</td>
</tr>
<tr>
<td>50-64 Years</td>
<td>0.0</td>
<td>100.0</td>
<td>21.8</td>
<td>25.4</td>
</tr>
<tr>
<td>65+ Years</td>
<td>0.0</td>
<td>0.0</td>
<td>1.5</td>
<td>1.2</td>
</tr>
<tr>
<td>Gender (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>100.0</td>
<td>50.0</td>
<td>52.0</td>
<td>51.5</td>
</tr>
<tr>
<td>Female</td>
<td>0.0</td>
<td>50.0</td>
<td>48.0</td>
<td>48.5</td>
</tr>
<tr>
<td>Blood Type (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>100.0</td>
<td>50.0</td>
<td>42.1</td>
<td>42.0</td>
</tr>
<tr>
<td>A</td>
<td>0.0</td>
<td>50.0</td>
<td>41.1</td>
<td>42.0</td>
</tr>
<tr>
<td>B</td>
<td>0.0</td>
<td>0.0</td>
<td>12.9</td>
<td>14.2</td>
</tr>
<tr>
<td>AB</td>
<td>0.0</td>
<td>0.0</td>
<td>4.0</td>
<td>1.8</td>
</tr>
<tr>
<td>Calculated Panel Reactive Antibody (CPRA%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-9</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>10-79</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>80+</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
G. Counties Served by CTOP

Table G1. Counties served by CTOP

<table>
<thead>
<tr>
<th>State Name</th>
<th>County Name</th>
<th>County FIPS</th>
<th>Shared with</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connecticut</td>
<td>Hartford County</td>
<td>09003</td>
<td></td>
</tr>
<tr>
<td>Connecticut</td>
<td>Litchfield County</td>
<td>09005</td>
<td>MAOB</td>
</tr>
<tr>
<td>Connecticut</td>
<td>Middlesex County</td>
<td>09007</td>
<td></td>
</tr>
<tr>
<td>Connecticut</td>
<td>New Haven County</td>
<td>09009</td>
<td>MAOB</td>
</tr>
<tr>
<td>Connecticut</td>
<td>New London County</td>
<td>09011</td>
<td></td>
</tr>
<tr>
<td>Connecticut</td>
<td>Tolland County</td>
<td>09013</td>
<td></td>
</tr>
<tr>
<td>Connecticut</td>
<td>Windham County</td>
<td>09015</td>
<td></td>
</tr>
<tr>
<td>Massachusetts</td>
<td>Franklin County</td>
<td>25011</td>
<td></td>
</tr>
<tr>
<td>Massachusetts</td>
<td>Hampden County</td>
<td>25013</td>
<td>MAOB</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>Hampshire County</td>
<td>25015</td>
<td>MAOB</td>
</tr>
</tbody>
</table>